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In 1980, tamoxifen was introduced as an effective adjuvant endocrine therapy for 
breast cancer, resulting in a significant increase in overall survival. Nevertheless, the 
development of acquired resistance limited the efficacy of tamoxifen therapy. Several 
molecular mechanisms have been proposed to explain the probable process of tamoxifen 
resistance. In vitro studies have suggested that alterations in the expression of cytoplasmic 
growth cascades such as insulin-like growth factor receptor (IGFR) and epidermal growth 
factor receptor (EGFR) along with associated downstream signaling pathways such as 
ERK1, ERK2, and ERK6 are the main cause of resistance to tamoxifen. In this review, we 
investigated the role of estrogen receptor-α (ER-α), EGFR, IGFR, and their downstream 
signaling pathways in tamoxifen resistance. The present study attempted to find out 
possible culprits of tamoxifen resistance to improve treatment efficacy in breast cancer 
patients.
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Tamoxifen has antiestrogenic properties that are 
helpful in chemoprophylaxis of ductal carcinoma 
in situ. This medication also plays the vital role 
in adjuvant therapy of ER-positive invasive ductal 
carcinoma [1]. Although tamoxifen is considered 
the gold standard in the adjuvant treatment of ER-
positive breast cancer [2], approximately 30% of 
ER-positive tumors are naturally resistant to this 
anti-hormonal therapeutic agent [3]. Studies indicate 
that insulin-like growth factor-1 receptor (IGF-1R), 
estrogen receptor-alpha (ER-α), epidermal growth 
factor receptor (EGFR), and their downstream 
signaling pathways are the main reasons for this 
resistance [4-6]. Tamoxifen is widely used in 
both luminal A and luminal B subtypes of breast 

carcinoma, which are the most common (luminal A 
and B subtypes) [7-10]. In the following sections, 
we present an overview focusing on receptors and 
their potential signaling pathways in the context of 
tamoxifen resistance.

Estrogen Receptor-α66
In breast cancer, overexpression of Estrogen 
Receptor α-66 (ER-α66) is common and is observed 
in nearly 70% of tissues (cancerous breast cancer). 
This receptor and its downstream molecules 
are involved in the transcription of a variety of 
transcription factors that have the ability to bind to 
estrogen receptor elements (ERE) located upstream 
of target genes. ER-α66 expression is associated with 
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breast cancer progression. Thus, tumor cells lacking 
ER-α66 expression usually exhibit an aggressive 
phenotype [11]. Moreover, ER-α66 expression in 
tumor tissues is usually associated with a better 
prognosis with endocrine therapy. Different variants 
of the estrogen receptor may play a central role in 
tamoxifen resistance. Recent studies have further 
investigated the role of ER-α36 (a 36-kilodalton 
variant of the estrogen receptor) in independent cell 
growth and tamoxifen resistance. Studies revealed 
a triad between ER-α36, EGFR, and HER-2. These 
molecules can activate each other and phosphorylate 
and induce estrogen receptor-α in an estrogen-free 
manner [12-14]. Due to this interaction of ER-α66 
and ER-α36, cells can become independent of the 
genomic pathway for proliferation, and when this 
occurs, tamoxifen sensitivity is not restored even 
when Receptor Tyrosine Kinase is inhibited [15]. 
Another form of ER, called the G protein-coupled 
estrogen receptor or GPER, is also associated 
with tamoxifen resistance. Studies show that this 
molecule is another variant of the estrogen receptor, 
located in the plasma membrane and activated by 
G-proteins. In the next step, it triggers EGFR and 
its downstream molecules such as AKT and MAPK 
[16-20]. According to Ignatov et al., migration of 
GPER from the cytoplasm to the plasma membrane 
has been linked to tamoxifen resistance by initiating 
crosstalk between GPER and the EGFR signaling 
pathway [17]. Moreover, GPER has a recognized 
anti-apoptotic effect by inhibiting pro-apoptotic 
proteins [20]. ERα exerts most of its pro-survival 
and mitogenic activities in cancerous breast tissue 
through a small fraction of ER and its interaction 
with various growth factor receptor components in 
tyrosine kinase signaling pathways [21, 22]. 

Cytosolic Components of Growth Signaling Path-
ways Phosphorylate ER-α66 At Ser118
According to a study by Qi et al., ER-α66 
phosphorylation at Ser118 is one of the most 
important mechanisms for the acquisition of 
tamoxifen resistance. To investigate whether 
phosphorylation of ER-α66 at Ser118 is required 
for proteasomal degradation, wild-type and 
mutant ER-α66 proteins (differing in their Ser118 
phosphorylation) were transfected into ER-negative 
cell lines. Interestingly, the amount of ER-α66 was 
not significantly different between the two groups. 

Nevertheless, transfection of MAPK resulted in 
a decrease in ER-α66 expression [4]. Thus, it was 
concluded that ER-α66 phosphorylation at Ser118 
by the MAPK molecule is critical for proteasomal 
degradation. Another study performed on T47D cell 
lines transfected with p38γ MAPK showed that the 
MAPK molecule restricts the expression of ERα-
driven classical genes. In contrast, non-classical 
gene pathways expressed through activation of 
c-JUN and AP-1 were not affected by p38γ MAPK, 
and expression of the end product of this pathway, 
cyclinD1, remained intact. Since p38γ mediates the 
switch from the classical to the non-classical ERα 
pathway, acquired tamoxifen resistance occurs [4]. 
The inhibitory effect of MAPK on the ERα may be 
justified via activation of downstream pathways of 
p38 MAPK [Inhibitory effects of 17β-estradiol or 
a resveratrol dimer on]. Classical gene expression 
pathway can be reversed in the presence of HER-
2 and SRC3, enhancing the cross-links between 
HER-2 and ER-α. These cross-links, in turn, lead to 
ER-α phosphorylation via activation of downstream 
molecules of the HER-2 pathway, and in the end, 
ERα is activated in the absence of estrogen, resulting 
in tamoxifen resistance [23]. They are all illustrated 
in Figure 1.

Figure 1:  Different Variants of Estrogen Receptor May Play a 
Critical Role in Tamoxifen Resistance

As shown in Figure 1, Tamoxifen and Estrogen both 
have a stimulatory effect on these variants (ER-α36 
and GPER). They, in turn, induce the growth pathways 
independently or in companion with Her2 or EGFR, 
leading to Tamoxifen resistance. To evaluate the 
role of the EGFR cascade on the phosphorylation of 
ER-α, EGFR-stimulating ligands such as EGF and 
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heregulin (HRG; soluble secreted growth factor) 
were added to the medium of MCF7 cells ectopically 
expressing the HER-2 gene. Administration of 
estrogen, EGF, heregulin, and tamoxifen resulted 
in the phosphorylation of ER-α, ERK1, ERK2, 
AKT, and HER-2. Since tamoxifen was unable 
to act as an antiproliferative agent in this context, 
gefitinib was added as an inhibitor of heregulin and 
EGF. It reduced the active phosphorylated form of 
ER, HER-2, and their downstream molecules and 
restored the antiestrogenic effect of tamoxifen in 
these cells [24]. Degraffenried et al. showed that 
the administration of rapamycin, a potent mTOR 
inhibitor, decreased 118p-ERα via inhibiting AKT/
mTOR activity [25]. On the other hand, some 
studies have shown that peptidylprolyl isomerase or 
Pin1 stabilizes 118p-ERα. This phenomenon in the 
presence of tamoxifen facilitates ER-α66 activity as 
a transcription factor [26-28]. This may explain the 
cause of the increase in 118p- ER-α in tamoxifen 
resistance.

Epidermal Growth Factor Receptor
Epidermal Growth Factor Receptor (EGFR) is a 
glycoprotein receptor on the surface of cells. It 
binds with its specific ligands, including epidermal 
growth factor (EGF), transforming growth factor-α 
(TGFα), heparin-binding EGF-like growth factor 
(HB-EGF), amphiregulin (AR), betacellulin (BTC), 
and epiregulin (EPR). All of these ligands can 
cause dimerization and autophosphorylation of the 
receptor, leading to induction of the p38 MAPK 
pathway, which, in turn, affects cell proliferation [29, 
30]. Moreover, EGFR activation can induce breast 
cancer cell proliferation in response to various types 
of environmental factors and pro-inflammatory 
cytokines [29]. Overexpression of EGFR as a major 
factor in the development of tamoxifen resistance. 
Although EGFR expression is reduced in estrogen-
containing media, its expression is slightly increased 
in tamoxifen-resistant cell lines. Moreover, EGFR 
expression was not increased in tamoxifen-resistant 
cell lines that developed resistance in estrogen-free 
media. Consequently, tamoxifen resistance could 
possibly be due to overexpression of EGFR due to 
the presence of tamoxifen in the culture media. It 
has been found that not only EGFR expression is 
increased in resistant cells but also the associated 
genes are overexpressed [17, 23, 31]. In contrast, 

there are still some studies showing that EGFR 
expression is decreased at both mRNA and protein 
levels in tamoxifen-resistant cell lines [3, 32]. 
Overall, EGFR overexpression correlates with 
tamoxifen resistance [33].
Administration of gefitinib, a potent EGFR inhibitor, 
was associated with a significant prolongation of 
overall survival in ER-positive tamoxifen-resistant 
breast cancer patients. Further investigation revealed 
that patients whose overall survival improved with 
gefitinib administration had a significant decrease 
in p-EGFR, p-ERK1, p-ERK2, p-MAPK, and Ki67 
compared to the other patients. However, the levels 
of ER, PR, pAKT, HER-2, and IGF1-R were not 
significantly decreased in these cases [33]. Finally, 
increased EGFR expression in breast cancer patients 
treated with tamoxifen was associated with poor 
prognosis and lower disease-free survival rates 
[33, 34]. As previously mentioned, phosphorylated 
EGFR is significantly increased in the MCF7 
cell line in estrogen-free media [35], causing a 
significant increase in the expression of some 
genes such as amphiregulin (AREG), betacellulin 
(BTC), epithelial mitogen homolog (EPGN), 
heparin-binding EGF-like growth factor (HBEGF), 
neuregulin2 (NRG2), and Neuregulin3 (NRG3)[36].

Enhanced Downstream ERK1,2 Activities in the 
Activated EGFR Pathway
Although EGFR is known to be overexpressed 
in tamoxifen-resistant cells, the status of its 
downstream molecules has not been fully 
elucidated. The estrogen receptor kinases ERK1 
and ERK2 are two important cytosolic signaling 
molecules that are stimulated by EGFR activation 
and are responsible for the phosphorylation and 
activation of MAPK. Compared to the AKT/
PI3K pathway, ERK1 and ERK2 play a greater 
role in the development of tamoxifen resistance 
and are responsible for the phosphorylation and 
activation of MAPK [37]. Although the study by 
Block et al., on tamoxifen-resistant MCF7 and 
T47D cell lines showed no changes in ERK1 and 
ERK2 expression levels, a significant increase in 
the amounts of phosphorylated ERK1 (p-ERK1) 
and ERK2 (p-ERK2) was observed. Moreover, 
p-ERK1 and p-ERK2 were found to be significantly 
higher in tamoxifen-resistant cell lines compared to 
sensitive cell lines [32]. Nevertheless, the question 
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arises whether the expression levels of p-ERK1 and 
p-ERK2 are under the control of estrogen or not. It 
has been found that in the absence of estrogen or 
chronic tamoxifen exposure, the expression levels 
of p-ERK1 and p-ERK2 increase significantly, 
leading to acquired tamoxifen resistance [35]. On 
the other hand, studies on MCF-7 cell lines showed 
a direct correlation between elevated estrogen levels 
and p-ERK 1, 2. Furthermore, the effects of variable 
estrogen concentrations on tamoxifen-resistant 
cell lines showed that the expression of p-ERK1 
and p-ERK2 reaches its maximum at an estrogen 
concentration of 10-14 M. However, in sensitive 
cells, the estrogen concentration must be higher 
(around 10-12 M)[38]. Interestingly, further studies 
showed that activation of Gαs (the alpha subunit 
of the stimulatory G protein) at low concentrations 
of tamoxifen led to the induction of p-ERK1 and 
p-ERK2 [39]. Qi et al., performed a study on MCF7 
cell lines overexpressing the gene HER-2 and stated 
that estrogen-free or estrogen-only media could not 
increase p-ERK1 and p-ERK2 levels [4]. However, 
these levels were higher in estrogen-only media 
compared to estrogen-free media. Overall, not only 
are p-ERK1 and p-ERK2 levels increased in an 
estrogen-dependent manner, but low concentrations 
of tamoxifen also have agonistic effects on p-ERK1 
and p-ERK2 expression via Gαs.

Tamoxifen Resistance as a Result of Interaction 
Between ERK 1,2 And MED1
ERK1 and ERK2 may also lead to tamoxifen 
resistance in other ways via phosphorylation of 
TRAP /MED1 in HER-2/EGFR overexpressing 
cells. MED1 is a nuclear protein that acts as a co-
activator for ER-α and several other transcription 
factors. While ERK1 and 2 activate MED1, it 
induces ER-α (via phosphorylation at serine-118) 
to transcribe from the HER-2 gene complex, which 
repeatedly leads to overexpression of EGFR/HER-2 
cascade proteins [40-43]. It has also been reported 
that AG825_as HER-2 inhibitor_ and PD98059_as 
MAPK inhibitor_ can dramatically reduce p-MED1 
[17]. As mentioned earlier, stronger expression of 
SRC3 leads tamoxifen to have agonistic effects 
on ER-α with the same mechanisms [44, 45]. In 
contrast, Brandt et al. showed an inverse relationship 
between SRC3 and ER-α expression levels [46]. 
The interaction between HOXB7, ER-α, and MED1 
is summarized in Figure 2.

Figure 2:  EGFR and Its Major Molecular Interactions

Interactions Between EGFR and MUC1-C
Some tumor cells showed increased expression 
of MUC1 protein. These cells are at higher risk 
of tamoxifen resistance. This is due to the role of 
the proto-oncogene MUC1-C and its interactions 
with EGFR. MUC1-C is the complex of 72 
amino acid residues located at the C-terminus of 
the MUC1 protein. Studies have confirmed that 
EGFR can phosphorylate the MUC1-C protein 
and that MUC1-C, in turn, induces other non-
genomic growth pathways. It can also bind to the 
DNA-binding domain of the estrogen receptor 
and induce genomic pathways. In this way, the 
expression of the MUC1 protein is increased [47-
49]. Increased expression and activity of ERK-6 
(p38-γ) in tamoxifen resistance overexpression 
of p38MAPK has been demonstrated in many 
studies [50]. P38-γ and p38-α are two isoforms 
of p38MAPK that act in opposite ways [51]. 
Similar to ERK1 and ERK2, p38-γ or ERK-6 also 
has mitogenic activity. It also has specific kinase 
activity in response to stressors [6, 52]. Numerous 
studies have shown that p38-γ is overexpressed 
in cell lines with EGFR overexpression [36, 53]. 
MCF7 cell lines transfected with EGFR-containing 
vectors showed a significant increase in p-AKT and 
ERK-6 levels. Therefore, tumor cell proliferation 
was not significantly affected by the presence of 
tamoxifen [24]. Interestingly, the expression of ERE 
(Estrogen Response Elements) was not suppressed 
in transfected cell lines in the presence of tamoxifen, 
suggesting that exogenous EGFR does not alter the 
inhibitory effects of tamoxifen. Further studies on 
the relationship between EGFR expression and 

 [
 D

O
I:

 1
0.

30
69

9/
m

ci
.6

.4
.3

2-
5 

] 
 [

 D
O

R
: 2

0.
10

01
.1

.2
47

64
92

2.
20

22
.6

.4
.3

.0
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 m
ci

jo
ur

na
l.c

om
 o

n 
20

23
-0

4-
16

 ]
 

                             4 / 11

http://dx.doi.org/10.30699/mci.6.4.32-5
https://dorl.net/dor/20.1001.1.24764922.2022.6.4.3.0
https://mcijournal.com/article-1-360-en.html


5

Mansouri et al.

acquired tamoxifen resistance have shown that 
inhibition of p38-γ in transfected cell lines treated 
with estradiol and EGF failed to desensitize the cells 
to tamoxifen. Consequently, it appears that p38-γ 
is not the only mediator of the EGFR-dependent 
mechanism of acquired resistance [1]. Studies in 
MCF7, 293T, and T47D cell lines, which differ in 
the level of expression of HER-2, have shown that 
MAPK activation, ERK1 and ERK2 activation led 
to phosphorylation of ER-α at the serine 118 residue 
(Ser118), which, in turn, leads to enhanced ER-α 
proteasomal degradation via E6AP activation. Based 
on current evidence, ERK-6 appears to be enhanced 
in ER-negative cells in contrast to ER-positive 
cells. Consequently, there is an inverse relationship 
between ER-α and ERK-6. Of note, overexpression 
of ERK-6 occurs in approximately 70% of breast 
cancers [4, 36].

Increased HOXB7 Expression Is Associated With 
EGFR Overexpression
In 2018, Farahmand et al., indicated that stem cell 
acquisition is one of the major mechanisms of 
drug resistance in breast cancer cells. EGFR and 
other Receptor Tyrosine Kinases (RTKs) can lead 
to overexpression of stem cell genes and proteins, 
which result in uncontrolled cell proliferation [54]. 
One of these proteins is HOXB7. This protein is one 
of the members of the HOX family, which is known 
to be one of the most potent transcription factors in 
cell development, proliferation, and differentiation 
[55-57]. MCF7-B7 cell lines expressing high levels 
of HOXB7 protein are more invasive in vitro 
than normal MCF7 cell lines [58, 59]. Moreover, 
MCF7-B7 cells were able to survive in estrogen-
free media. In the presence of tamoxifen, MCF7 cell 
lines concomitantly exhibit a gradual increase in 
HOXB7 expression. In support of this observation, 
HOXB7 siRNAs (small interfering RNAs) were 
added to the media to repress the HOXB7 gene. 
Interestingly, the siRNAs effectively desensitized 
the tamoxifen- resistant cells. Moreover, MCF7-B7 
cancer cells treated with 1 µg tamoxifen for thirty 
minutes showed a significant increase in EGFR 
autophosphorylation and phosphorylation of ER-α 
at Ser118. It has been shown that HOXB7 in the 
presence of tamoxifen leads to overexpression of 
EGFR and consequently enhances the response to 
EGFR-specific ligands such as TGF-β and HB-EGF. 
It has been shown that ER-α is the major mediator 

required for HOXB7 function. Thus, inhibition of 
ER-α reduces the effects of HOXB7. ER-α coupling 
with HOXB7 leads to HER-2 and overexpression of 
estrogen receptor-related genes.

Interactions Between Mirna, HOXB7 and C-
MYC 
miR-196α is a microRNA that has shown regulatory 
effects on HOX gene expression. This molecule 
is regulated by ER-α, and activation of ER can 
lead to higher expression of miR-196α. Studies 
indicated the positive correlation between higher 
levels of miR-196 and tamoxifen resistance. The 
family of MYC oncogenes is also known as super 
transcription factors, which are responsible for the 
transcription of approximately 15% of the entire 
human genome. The related proteins are c-myc 
(MYC), n-myc, and l-myc. They all play critical 
roles in cell differentiation, proliferation, and 
survival [60-64]. It appears that suppression of miR-
196α significantly increases HOXB7 expression and 
tamoxifen resistance. Overexpression of MYC due 
to activation of HER-2 further increased HOXB7 
levels by miR-196α inhibition. Thus, it appears that 
a positive feedback loop is due to HER-2 activation, 
MYC overexpression, and HOXB7 elevation [65].
In this Figure, the interactions between HOXB7, 
c-myc, and MED1 are shown, all of which are 
activated via downstream EGFR molecules. 
Moreover, non-genomic pathways of the estrogen 
receptor can also be activated. The ligand in this 
Figure can denote different molecules such as EGF, 
HB-EGF, TGFβ, etc.

Insulin Growth Factor Receptor Signaling 
Cascade
IGFR, another receptor tyrosine kinase, is activated 
by insulin and IGF-1. It can induce p38 MAPK 
and PI3K/AKT signaling pathways with similar 
downstream molecules as EGFR. In the remainder 
of this article, we will examine some of them in 
more detail.

IGFR/EGFR and IGFR/HER-2 Dimerization, a 
Novel Strategy for Inhibitor Inactivation
IGFR can induce EGFR activation by dimerization 
with EGFR or direct coupling with ER-α [5]. It 
has been suggested that IGFR heterodimerization 
with HER-2 in the presence of trastuzumab is a 
contributing factor to resistance to trastuzumab [66]. 
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Werner et al. were the first group to introduce IGFR 
as a cancer biomarker due to its overexpression 
in several breast cancer cell lines [67]. Moreover, 
the agonistic activity of IGFR in breast cancer 
cells showed that it is one of the major causes of 
tamoxifen resistance. Recent studies suggest that 
the agonistic activities of tamoxifen at the lower 
doses may be the result of IGFR effects [2].

The Maintenance of Survival, Enhancement of 
Proliferation, and Inhibition of Apoptosis as a 
Result of Interaction of IGFR Networks With 
Other Molecules 
IGFR has been shown to promote cell maintenance 
and metastasis of cancer cells [5]. It can also 
effectively inhibit tamoxifen-induced apoptosis 
in cancer cells. Schoenlein et al., reported that 
co-administration of tamoxifen and mifepristone 
can induce apoptosis in MCF7 cancer cell lines. 
Nevertheless, administration of IGF-1 under 
physiological concentrations can alter cell fate. 
Further studies have shown that co-administration 
of tamoxifen and mifepristone can trigger cell 
death via increased hyperphosphorylation of 
retinoblastoma 110 (RB110), an important protein 
involved in the induction of apoptosis [68, 69]. 
On the other hand, concomitant administration of 
IGF1/tamoxifen or IGF1/mifepristone significantly 
reduces the expression of RB100, poly ADP-ribose 
polymerase (PARP), lamin A, Reactive Oxygen 
Species (ROS), and other proteins involved in the 
apoptosis cascade [70].

Activation and Overexpression of IGFR
Tamoxifen-resistant and tamoxifen-sensitive cancer 
cells differ in the expression of IGFR. Several studies 
indicated overexpression of phosphorylated IGFR 
in tamoxifen-resistant cells compared to sensitive 
cells, suggesting the role of IGFR in tamoxifen 
resistance [31]. Inhibition of IGFR expression has 
no significant effect on sensitivity to tamoxifen and 
mifepristone in either resistant or sensitive cells. 
According to Periyasamy et al., although the addition 
of IGF-1 to the media leads to the development 
of resistance to mifepristone and tamoxifen, the 
acquired resistance is much more evident in cell 
lines in which IGFR expression is inhibited [70]. 
This indicates that IGFR activity in resistant cells 
is dependent on extracellular stimulators rather than 

EGFR. Conversely, Chong et al. found that IGF-1 
mRNA levels were reduced in resistant cancer cells 
in contrast to sensitive cell lines, and increased IGF-
1 expression was associated with better prognosis 
in breast cancer patients; however, there was no 
established association between IGFR levels and 
prognostic status [23]. Overall, although the role 
of IGFR in acquired tamoxifen resistance has not 
been fully elucidated, it appears that its increased 
activity, as well as other mediators, including growth 
signaling systems may lead to the development of 
tamoxifen resistance.

CONCLUSIONS
Proliferation of breast cancer cells may occur as 
a result of uncontrolled overactivity of cytosolic 
growth pathways. Among these, estrogen with its 
associated receptor in the nucleus appears to be the 
most important factor in controlling proliferation of 
a majority of breast cancer cells. In recent studies, 
estrogen surprisingly showed both proliferative and 
anti-proliferative properties. Remarkably, estrogen 
led to apoptosis in the experiment conducted with 
the tamoxifen-resistant long-term cell line Estrogen 
Deprived (LTED-R). Neither RTK inhibitors nor 
tamoxifen succeeded in inducing programmed cell 
death. This was a crucial difference between simple 
tamoxifen-resistant cell lines (Tam-R) and LTED-R 
cell lines [71]. Tamoxifen has been identified as a 
selective estrogen receptor modulator. This drug 
is used in prevention and treatment of estrogen 
receptor (ER)-positive breast cancer. The differential 
antagonistic or agonistic effects of tamoxifen on ERα 
are explained through the tissue-specific expression 
profiles of receptor coactivators as well as activators 
[72, 73]. In cases of metastatic breast cancer 
with ERα positive, at the beginning of treatment 
with tamoxifen, the mechanism is such that the 
mitogenic activity of estrogens is initially blocked 
by tamoxifen, which causes tumor regression. Like 
previous studies, some breast cancers had primary 
resistance to tamoxifen in the study. In the treatment 
process, cancers (breast cancer) that respond well 
at the beginning through different mechanisms 
(including the expression of G-protein coupled 
estrogen receptor 1: GPER1), which mediates the 
stimulating action in fulvestrant and tamoxifen, 
become resistant to tamoxifen [74]. Tamoxifen can 
act as an agonist or antagonist through the ERα 

 [
 D

O
I:

 1
0.

30
69

9/
m

ci
.6

.4
.3

2-
5 

] 
 [

 D
O

R
: 2

0.
10

01
.1

.2
47

64
92

2.
20

22
.6

.4
.3

.0
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 m
ci

jo
ur

na
l.c

om
 o

n 
20

23
-0

4-
16

 ]
 

                             6 / 11

http://dx.doi.org/10.30699/mci.6.4.32-5
https://dorl.net/dor/20.1001.1.24764922.2022.6.4.3.0
https://mcijournal.com/article-1-360-en.html


7

Mansouri et al.

pathway, depending on cellular differences in co-
repressors or co-activators. Meanwhile, Tamoxifen 
can be introduced as an estrogen agonist that acts 
through GPER-1. GPER-1 has a higher expression 
level in breast cancer cells (with primary or 
secondary resistance to tamoxifen)[75].
As a member of the selective estrogen receptor 
modulator (SERM) family, tamoxifen selectively 
couples to ER-α66 in the nucleus and inhibits 
the transcription of specific genes. Nevertheless, 
cytosolic growth pathways also play a vital role in 
promoting the cell cycle in an estrogen-independent 
manner. Cells have been shown to proliferate 
independently of the estrogen pathway and its 
inhibitors such as tamoxifen when these pathways, 
including EGFR and IGFR are overactivated. As 
described in detail in this review, EGFR and IGFR 
are activated by binding to their most specific 
ligands, EGF and IGF, respectively and, in turn, 
trigger the downstream signaling cascades ERK1, 
ERK2, and ERK6. Overall, studies in breast cancer 
patients and cell lines show that overexpression 
and/or overactivation of EGFR [17, 23, 31, 35], 
ERK 1, 2 [24, 32, 35, 37, 39], EGFR ligands 
including amphiregulin (AREG), Betacellulin 
(BTC), Epithelial Mitogen Homolog (EPGN), 
Heparin-binding EGF-like growth factor (HBEGF), 
Neuregulin2 (NRG2), NRG3 in tamoxifen-resistant 
cells [36], and HOXB7 [56] are among the major 
contributors to the development of tamoxifen 
resistance. In addition, overexpression and/or 
activity of IGFR [31, 40, 69, 70] and its coupling 
with the receptors HER-2 and EGFR [31, 66], 
together with the agonistic effects of tamoxifen 
(via IGFR), may also induce tamoxifen resistance 
[2]. Therefore, it is of utmost importance for future 
studies to describe the role of these agents in 
resensitizing cells to tamoxifen.
Since the introduction of gefitinib as an effective 
EGFR inhibitor, numerous studies have investigated 
the efficacy of this drug in resensitizing tamoxifen-
resistant cells. Most of them have been performed 
in vitro, and there are few clinical trials. The study 
by Gutteridge et al. is an example of a clinical trial 
that compared the beneficial effects of gefitinib 
administration on resensitization of ER-positive 
patients [33]. Since there are numerous interactions 
between ER-α, HER-2, and the EGFR pathway, 
administration of a dual HER-2 and EGFR inhibitor, 

such as lapatinib in combination with tamoxifen, may 
resensitize cancer cells to tamoxifen. In addition, 
the phase III clinical trial (EGF30008) studied 1286 
patients to compare the results of co-administration 
of lapatinib and letrozole with the control group 
receiving letrozole alone. Interestingly, the results 
indicated that concurrent treatment with lapatinib 
prolonged disease-free survival from 3 months in 
the control group to 8 months in the case group 
receiving concurrent letrozole and lapatinib [76]. 
Therefore, it is critical for future studies to further 
elucidate the molecular relationships between 
estrogen-dependent and-independent pathways and 
the subsequent development of tamoxifen resistance. 
Crosstalk between ERα and HER-2 and EGFR 
are the major molecular pathways contributing to 
tamoxifen resistance. Activation of MAPK and AKT 
triggers the subsequent phosphorylation of MAPK, 
AKT, and ER-α at Ser118 and Ser167. In addition, 
ERα and HOXB7 would lead to overexpression of 
EGFR and HER-2 [65]. There is a need to investigate 
how certain patients develop tamoxifen resistance, 
especially given the complex networks of molecular 
interactions that may result from chronic tamoxifen 
exposure. However, this question remains unclear, 
as some patients never develop resistance despite the 
molecular pathways mentioned above. Therefore, 
certain unknown signaling pathways may contribute 
to the activation of the EGFR/IGFR cascade 
and promote the development of cell resistance. 
The cross-talk between estrogen-dependent and 
-independent signaling pathways associated with 
acquired tamoxifen resistance has led researchers to 
search for molecules involved in altering the cellular 
response to tamoxifen, which requires further study 
and investigation.
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