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Abstract
DNA sequencing is one of the great valuable techniques in molecular biology, which can 
be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se-
quencing known as Next Generation Sequencing (NGS) revolutionized genomic research 
and molecular biology; therefore, the whole human genome can be sequenced with a low 
cost in several days. NGS technology is similar to the traditional method, Sanger, which 
detects small DNA fragments by emitted signals at the time of synthesis of each fragment 
(from the DNA template), but the difference is that NGS can determine the massive simul-
taneous sequencing in a few days with high accuracy and the results are directly detected 
without the need for electrophoresis. In fact, NGS technology combines a variety of steps 
such as sample preparation, fragmentation of the sample of the studied genome, attachment 
of adapter to the ends of the fragments, imaging, and data analyses. In recent years, NGS 
technology continuously expanded the range of applications in different fields by reducing 
costs, increasing rates, and improving the quality of the data. The current review provid-
ed the potential applications of the NGS technology by emphasizing the diagnosis of the 
genetic diseases, identification of several types of cancers, prenatal screening, epigenetic 
modifications, personalized medicine, and identification of pathogens. 
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In the early 1970s, DNA sequencing was evolved 
from the Maxam-Gilbert and the Sanger-Coulson 
methods. The Maxam-Gilbert approach was based 
on the radioactive labeling at the end of DNA 
fragments targeted to specific chemical cleavage 
followed by gel electrophoresis to separate the 
reaction products and subsequently visualized by 
film autoradiography. The Sanger-Coulson used 
a specific primer to begin the amplification at a 
particular position along the DNA template, and also 
employed the dideoxy terminator for DNA molecule 
that caused base-specific termination of synthesized 
DNA with the various labels for each nucleotide 

and finally by the capillary electrophoresis (CE) 
separated the chain termination products [1-3] . The 
Sanger DNA sequencing can accurately read 700-
900 bp and is therefore appropriate for a particular 
gene sequencing. The Sanger dideoxy termination 
was selected as the pivotal procedure for DNA 
sequencing due to less chemicals and higher 
efficiency [4].
Despite the widespread application of Sanger 
sequencing in the laboratories, this technique is no 
longer responsive to the needs of the researchers 
due to some limitations such as low throughput, 
low speed, high cost, and timing. In order to 
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overcome the obstacles and improve the quality 
of information, a cost effective, high throughput, 
quick, and high accuracy technique was required 
that was also capable of sequencing with a little bit 
of genomic sample, which led to the discovery of a 
new technology, or a new generation of sequencing 
in 2005 referred to as next generation sequencing 
(NGS) [4, 5]. NGS, also known as massively parallel 
sequencing is a kind of DNA sequencing technology 
that produces short sequences by immobilizing 
millions of amplified DNA fragments on an array 
to determine sequence in a single run [6, 7]. This 
progressive technology revolutionized genomic 
research, biomedicine, and molecular biology, 
compared with the traditional sequencing methods 
[8].
NGS is faster than the Sanger dideoxy sequencing 
since the chemical reaction and signal detection 
are merged with each other and minimize the 
need for the fragment-cloning methods used with 
the Sanger sequencing. Among them, Illumina/
Solexa, Roche/LS454, ABI/SOLiD, and Helicos 
are the main technologies [9]. NGS is an efficient 
and promising tool to capture a large amount of 
genomic information and now widely applied in 
clinics in many fields such as molecular diagnostics, 
identification of polymorphisms and their 
association with Mendelian and complex genetic 
diseases, identification of several types of cancers, 
understanding RNA structure, transcriptomics, 
pathogen detection, prenatal screening, epigenetic 
modifications, personalized medicine, etc. [10, 11]. 
The current review represented the potentialities 
and clinical applications of NGS technology and the 
power of this novel genomic tool.

Overview of NGS Technology
NGS workflow includes four major steps: sample 
preparation, library construction, sequencing, 
and data analysis [12]. The process begins with 
dsDNA, RNA, and smaller portions of the genome 
as a starting material extracted from a sample to 
provide a template [13, 14]. Typically, the main 
step in sample preparation is fragmentation and 
size selection of the target sequences performed 
by chemical, enzymatic, and physical methods. In 
general, the physical and enzymatic manners are 
performed by sonication and using the endonucleases 
or transposases, respectively [15]. Subsequently, a 
certain size range of adapters is ligated to both ends 
of DNA fragments to construct the library, and the 

suitable library size is determined according to the 
length of insert size and the sequencing application 
[15]. Following adapter ligation, these libraries are 
targeted for sequencing directly or pre-amplified on 
the flowcell or the bead surface prior to sequencing 
to generate clusters based on the protocol and 
sequencing platform [15, 16]. Subsequently, the 
generated data should be imagined and analyzed 
by specific software to align with a reference 
genome or classified as a de novo assembly in the 
absence of reference genome [17]. Sequencing for 
de novo assembly is often performed when the 
microorganisms are uncharacterized or the purpose 
is to find out the genomic content and functional 
potential of the organism under exploration [9]. 
Therefore, improvements in bioinformatic tools as 
well as sequencing technology probably boost the 
success rate of sequencing.
Most NGS technologies use sequencing by synthesis 
approach [18]. In other words, to sequence DNA 
fragments, they should be bounded to an array, 
then labeled nucleotides have to be added by 
DNA polymerase and accordingly, high-resolution 
camera detects the signal from nucleotides; then 
after, the sequence at each spot can be interpreted 
by a specific computer program in order to read the 
DNA sequence [18]. There are various platforms 
or sequencers that differ in their throughput 
capabilities, read length, time per run and accuracy 
[18]; and therefore, researchers can choose one of 
them based on their needs.

Quality Control (QC) of NGS Technology
Since NGS workflows are complex and there is a 
lack of quality control programs in sequencing 
experiments, it is quite pivotal to set up and 
improve the procedures for standardization as well 
as quality documentation. Besides, verification 
and validation of sequenced data to obtain the 
reliable and reproducible data are crucial points 
[19]. Furthermore, quality control programs in 
NGS include several check points, which should be 
examined after each step such as sample preparation 
and library construction, before and after the 
sequencing run [11]. These can differ depending on 
the selected approach and sequencers, but generally 
comprise measurement of sample quality, quantity, 
purity, and integrity to ensure that samples with the 
appropriate quality maintained along the workflow 
[20]. Following the sample quality control, there is 
another QC check point in the library preparation in 
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NGS workflow in order to guarantee the size, purity, 
concentration and efficiency of ligated adaptors 
according to the platform requirements [21]. The 
last stage of QC prior to the sequencing run and size 
selection of amplified fragments is performed in 
order to remove all contaminants such as unligated 
adapters and biases in base composition [19, 22]. 
Finally, after sequencing run, it is necessary to verify 
and validate the obtained results using an alternative 
technology such as pyrosequencing [21]. 
Moreover, there are various kinds of software tools 
that can focus on quality features of NGS data 
[19, 20, 23]. One of the most common software to 
evaluate the sequenced data with a known reference 
genome is FastQC and also in the absence of 
reference genome, some pre-processing tools exist 
that perform in the k-mer space to assess the quality 
parameters such as over-represented sequences and 
sequencing errors to remove the bad quality reads 
and trimming [23-25]. 

Limitations of NGS Technology
In addition to the advantages of NGS technology 
mentioned in the introduction section, the most 
important challenge that can be addressed is the 
data analysis that requires advanced computers, 
specialized software, fast data processing, large data 
storage capabilities, and individuals experienced 
with NGS data analysis approaches especially 
regarding bioinformatics and troubleshooting to 
analyze and clinically interpret the data [26]. 

Strategies of NGS Technology
Genomics experiments are mainly interpretative and 
success of all experimental designs is very important 
both for researchers and clinicians; therefore, 
choosing a sequencing strategy that matches with the 
goal of project should be prioritized. The technology 
of NGS follows one of the two general strategies: 
whole-genome sequencing (WGS) and targeted 
sequencing [27, 28]. The first approach evaluates 
the entire genome and contains both gene-coding 
and non-coding regions [29]. Targeted sequencing 
utilizes target-specific primers for Polymerase 
Chain Reaction (PCR) amplification and selectively 
amplifies genomic areas of interest [9]. 
Potential-targeted strategy for NGS technology is 
exome sequencing, which focuses on the coding 
regions of the genome and can also involve either 
the whole exome sequencing (WES) or a panel of 
genes [29]. One of the main challenges for clinicians 

is choosing between region specific sequencing 
and WES, according to their applications and 
characteristics. Therefore, WES seems to be more 
cost-effective than region specific sequencing, but a 
region specific method has a much higher coverage 
of all the specific genes using the complementary 
approaches containing the Sanger sequencing or 
long-range PCR to obtain more confident results 
[30, 31].
Whole transcriptome sequencing or RNA-Seq is 
another kind of sequencing that reveals the presence 
and quantity of RNA in a biological sample and can 
evaluate the gene expression and alternative splice 
variants [32, 33].

Clinical Applications of NGS Technology
There are many potential applications of NGS in 
clinical practice due to its high-throughput and cost-
effectiveness in comparison with traditional Sanger 
sequencing that some of its applications were 
summarized in the current review. 

Detection of Gene Variations
Since most of diseases have a genetic basis, 
identification of genetic variants related to such 
diseases is very important and is performed by 
genome-wide association studies (GWAS), but 
detection of rare and structural variants is not 
possible with the genotyping arrays and needs a new 
technology with the potential capability of WGS 
[34]. Although there is a wide spectrum of DNA 
variations in a human genome such as insertions/
deletions (indels), substitutions, and arrangements 
(inversions and translocations), which some of them 
like substitutions and small indels cannot be detected 
by routine sequencing methods, researchers, with 
the advent of NGS technology, can capture a range 
of novel mutations and disease causing genes by 
investigation of the full genome or exome without 
bias [35]. For instance, by applying the WES, the 
causal variants of Miller syndrome, as the first rare 
Mendelian disorder, were identified [36]. Although 
WES encompasses the protein-coding regions of the 
genome, they may not be completely covered due to 
the presence of the high GC content and repetitive 
sequences, which are poorly sequenced [35, 36].

Oncology
Cancers are induced by a broad spectrum of genomic 
alterations including point mutations, deletions, 
insertions, copy number alterations, and structural 
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variations, which can be somatic or inheritable. 
Therefore, genomics and transcriptomics (RNA) 
data of cancer cells and structures with new DNA 
sequencing technologies (NGS) coupled with 
powerful bioinformatic tools provide opportunities 
to understand pathogenesis, diagnosis, management, 
treatment of disease, and improvement of the 
personalized treatment strategies [36, 37]. These 
technologies have the potential ability to identify 
the novel mutations and alterations in the cancer 
genome through whole-genome and whole-exome 
methods in order to distinguish the somatic and 
germ line variants by comparing these changes with 
those of normal samples [38]. In addition to the 
referred NGS technologies, the whole-transcriptome 
(RNA-Seq) and ChIP-Seq are utilized to detect the 
RNA editing, alternative splicing, fusion transcripts, 
and epigenetic alterations to gain an accurate and 
deep understanding of the cancer transcriptome 
and genome [39]. Many NGS-based researches are 
conducted to investigate the cancer progression, 
metastasis, tumor complexity, heterogeneity, fusion, 
and tumor evolution. Also, remarkable improvements 
are made for lung, breast, ovarian, liver, colorectal 
cancers, and leukemia [40-43]. For example, using 
the WGS in a patient with acute myeloid leukemia, 
an unfamiliar insertional fusion was detected that 
generated a classic bcr3 PML-RARA fusion gene 
and the findings changed the patient’s treatment 
schedule [44]. Clinicians can design patient-specific 
probes that use DNA in the patient’s blood serum to 
observe his/her improvement and check for any signs 
of relapse [45, 46]. Although clinicians use the tumor 
biopsy as a gold standard for molecular diagnostic 
analysis, collection of fresh biopsies poses troubles 
for patients and researchers attempting to improve 
approaches to sequence other sources of tumor 
cells containing circulating tumor cells (CTCs) and 
circulating cell-free tumor DNA (ctDNA) detectable 
in plasma [47]. NGS analysis of cell-free tumor DNA 
suggests a strong procedure to identify the potential 
mutations in cancer and match patients with suitable 
targeted therapies. Furthermore, NGS analysis 
of this method allows visualization of the tumor 
evolution over time and treatment [47]. Therefore, 
NGS technologies are widely used in the clinics for 
cancer prognosis and diagnosis. The researchers 
hope to help the clinicians by discovering more 
biomarkers and developing targeted therapy to find 
the best personalized treatment [39]. It should be 
kept in mind that due to the variety in the cancer 

genomes and phenotypes, interpretation of the NGS 
data also require more analysis in combination with 
multi-omics data and clinicopathological data in a 
larger sample size to achieve comprehensive and 
efficient results [48].

Breast Cancer
Nowadays, the next generation sequencing is widely 
used in gene research and plays an important role 
in various cancers including breast, ovary, prostate, 
lung, pancreatic, liver, etc. Breast cancer is a disease 
of multifactorial inheritance, originating from 
the mutations of the normal cells. In recent years, 
researchers gained great improvements in breast 
cancer, especially using NGS. The NGS in breast 
cancer research is mostly used in three features: 
genome DNA sequence analysis (i.e. the WGS, 
exon sequencing, targeting gene sequencing), RNA 
transcription sequencing (i.e. the whole transcriptome 
analysis, small RNA sequencing, non-coding 
RNA analysis), and epigenetic sequencing [49]. 
Researchers reported several mutations or deletions 
of many genes related to breast cancer such as TP53, 
PTEN, RUNX1, CCND3, and PTPN22 [50].
D’Argenio et al., employed the NGS to detect 
BRCA1 and BRCA2 mutations and reported that 
this method was more sensitive than the traditional 
Sanger sequencing [51]. In another study by Ma et 
al., a novel mutation of BRCA2: c.8946_8947delAG 
(p.D2983FfsX34) was identified in a Chinese female 
by NGS [52] . Some studies revealed that specific 
miRNA abnormalities associated with specific types 
of breast cancer such as miR-10b, miR-9, miR-31, 
miR-126, and miR-335 are connected with breast 
cancer metastasis [53, 54].
Thompson et al., and Kiiski et al., demonstrated in 
two separate studies by whole-genome and exon 
sequencing that the rare mutations of FANCC, BLM, 
and FANCM genes were the potential susceptibility 
alleles of breast cancer [55, 56]. Pronina IV et al., 
using NGS, found a strong association between 
hypermethylation of MIR-127 and MIR-125b-1, 
and breast cancer progression [57].
About 5%-10% of breast cancers are hereditary. 
Genetic testing such as Sanger-based sequencing 
is used for hereditary cancers. But this traditional 
approach for genetic testing of hereditary cancers 
is time consuming and has low throughput and 
high cost [58]. Although BRCA1 and BRCA2 are 
the most identified hereditary cancer genes, only 
an estimated 5%-10% of breast cancers appear in 
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individuals with inherited mutations in these genes 
in families [59, 60]. Currently, hereditary cancer 
testing is suggested by a variety of specialists both 
for affected and unaffected individuals [61, 62].
Multiple studies demonstrated that multi-gene 
testing identifies more individuals with hereditary 
breast cancer than testing for BRCA1/2 alone. 
The individuals with a suspected hereditary breast 
cancer, previously reported negative for BRCA1/2, 
were tested for additional genes and the results were 
positive in 2.9%–11.4% of the cases. In spite of the 
benefits of multi-gene testing, some argue that it is 
better to implement new DNA testing technology. 
Therefore, multi-gene testing allows for increased 
detection of hereditary cancer syndromes by 
utilizing the advantages of NGS technology [59]. 
Advances in NGS technology made it possible 
to test multiple genes simultaneously. Jalkh et al., 
studied 45 Lebanese patients with a family history 
of breast cancer using WES technique followed 
the Sanger sequencing validation. The results 
showed that 19 pathogenic mutations were found 
in 13 different genes such as ABCC12, APC, ATM, 
BRCA1, BRCA2, CDH1,ERCC6, MSH2, POLH, 
PRF1,SLX4, STK11, and TP53 [62]. Walsh et al., 
by the application of NGS technology, detected 21 
genes associated with hereditary breast and ovarian 
cancers including BRCA1 and BRCA2, with 
inherited mutations [63]. Therefore, application 
of NGS in genetic testing for hereditary cancer 
syndromes is the first and closest step for its 
transition into clinical phase [64].

Epigenetic
Epigenetics is the science that studies the heritable 
modifications in gene expression that do not contain 
the DNA sequence [65]. There are two groups of 
epigenetic modifications: DNA methylation and 
post-translational modifications of histone. Recently, 
microRNA (miRNA) gene expression regulation 
was classified as epigenetic modifications [66]. 
Epigenomics implies the complete study of these 
alterations across the whole genome. Epigenetic 
mechanisms have major role in the growth of cells and 
normal development [67, 68]. Aberrant epigenetic 
changes can be contemplated as one of the causative 
factors in cancer [69]. Analysis of the epigenetic 
modifications is a key factor to understand the 
heterogeneity and complexity of human that despite 
possession of identical genome, various cell types 
express their genes in different ways (epigenome) 

[70]. Therefore, it is highly important to investigate 
the profile of epigenome in a cell to be used as 
epigenetic biomarker for prognosis, diagnosis, and 
therapeutic applications [71, 72]. DNA methylation 
analysis is the most frequent application of NGS 
in the field of epigenetics. NGS technologies using 
methylated DNA immunoprecipitation (meDIP) and 
bisulphite methods can represent the properties of 
the methylated DNA to increase the understanding 
of specific cell-type expression patterns that cannot 
be explained at the genetic level [73]. Chromatin 
immunoprecipitation followed by NGS (ChIP-Seq) 
are applied to study the location of transcription 
factors, the transcription factor binding, and 
histone modifications, which comprises acetylation, 
methylation, phosphorylation, etc., at the whole-
genome level [71].
Currently, by the combination of methylation array 
approach with massive DNA methylation analysis 
and RNA expression profiles, a large number of 
genes and miRNAs are identified under epigenetic 
regulation in many tumors such as colorectal, renal, 
prostate, and non-small cell lung cancer (NSCLC) [70, 
74-76]. One of the earliest incentives to investigate 
the epigenetic modifications through NGS in clinical 
samples is achieving the extra information that can 
be gained from the pharmaco-epigenomics; it means 
that the presence of methylation at particular genes 
in certain cancers is associated with the clinical 
reaction to treatment that is extremely important to 
access the most effective treatment in the clinical 
epigenetics field [70].

Prenatal Diagnosis
Prenatal diagnosis contains features relating to 
the health of both the fetus and the parents [77]. 
Current methods including the combined test and 
invasive procedures (amniocentesis and chorionic 
villus sampling (CVS) used to screen the fetus 
for chromosomal abnormalities pose a risk to 
mother and fetus [78]. In addition to the risk, the 
rate of abortion related to CVS and amniocentesis 
is 1.0% to 2.0% [79] and the false positive rate of 
combined test is 5.0%-9.0% [80], and sometimes 
mothers with healthy fetuses may be selected for 
unnecessary invasive diagnostic tests that lead to 
spontaneous abortion [81]. Therefore, replacing 
the current invasive tests with Non Invasive 
Prenatal Diagnosis (NIPD) test reduces the risk 
and increases the detection rate for the three most 
prevalent aneuploidies; Down syndrome (trisomy 
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21), Edward syndrome (trisomy 18), and Patau 
syndrome (trisomy 13) [78] . The NIPT is based 
on the finding of cell-free fetal DNA (cffDNA) in 
maternal plasma detectable as early as four weeks 
gestation [47, 82], making NIPT accessible earlier 
in pregnancy in comparison with invasive methods 
[83]. The cffDNA analysis with the NGS technology 
can be performed on a blood sample taken from the 
pregnant mother, that is cffDNA is sequenced and 
the reads are mapped to each chromosome and 
then counted, and it can be calculated whether a 
chromosome is over- or underrepresented [84, 85]. 
The main advantages of NGS for prenatal diagnosis 
are that NGS can be used to analyze non-invasive 
samples and has the capacity to recognize micro 
chromosomal abnormalities [86].

Personalized Medicine
Traditional medical model to detect and treat 
disorders is highly expensive for patients and 
healthcare system. Therefore, it is necessary to apply 
an innovative approach such as NGS technology 
to accelerate the early detection of disorders [87]. 
Personalized medicine (PM) is an approach to medical 
diagnosis, treatment, and risk assessment based on an 
individual’s genetic in order to improve health care for 
the individual and predict which medical treatments 
are proper for the patient [88, 89]. Application of 
the PM can decline financial and time expenditures, 
and increase the quality of life in patients [90]. PM 
separates individuals into subpopulations that show 
different responses to a therapeutic agent for their 
specific disease. For example, Herceptin is a useful 
drug for patients with breast cancer and elevated 
expression of HER2. However, some patients with 
increased HER2 are resistant to Herceptin due to 
mutations to the HER2 gene. Therefore, molecular 
identification of patients with breast cancer allows 
for the optimal application of Herceptin through 
stratification of the patients [91].
To date, many studies applied NGS methods for 
personalized treatment of cancer. For example, 
NGS is used to treat pancreatic cancer [64]. It is 
also used to detect epidermal growth factor receptor 
(EGFR) deletions in NSCLC [92]. There is general 
agreement that NGS should be the standard method 
when several genes should be tested in the same 
patient. For instance, patients with estrogen receptor-
positive breast cancer should be tested for mutations 
in PIK3CA, ESR1, AKT1, and ERBB2. It seems 
that NGS possibly becomes the standard method to 

diagnose genomic alterations in breast cancer [47]. 

Clinical Microbiology
NGS is applied in medical microbiology as a 
powerful tool for molecular case finding, outbreak 
management, bacterial typing, determination 
of biological properties such as the presence of 
virulence factors, fast recognition of bacteria through 
the 16S rRNA region that requires bacterial isolates, 
antimicrobial agent resistance and metagenomics 
approaches that may be applied directly on the 
sample [93, 94]. NGS technology, using the WGS 
approach, is performed to detect highly-virulent 
bacteria; for example, Shiga toxin-producing 
Escherichia coli that is liable for great outbreaks 
[95]. Another application of NGS technology in 
medical microbiology is molecular case finding 
performed within a few hours. Some cases are 
reported in Denmark, Germany, and the Netherlands 
in hospitalized patients to screen the mcr-1 gene in 
Enterobacteriaceae isolates, which is in charge of 
colistin resistance [96-98].
NGS is also helpful to identify novel resistance 
genes such as antibiotic resistance genes in bacteria 
[99]. NGS, using the culture-independent methods, 
allows researchers to sequence a number of 
pathogens directly from biological samples [100]. 
This approach is referred to as metagenomics and 
can detect all micro-organisms in a clinical sample 
without the prior need for culturing [101]. There are 
some reports about the metagenomics strategy that 
was favorably performed to sequence the eukaryote 
Plasmodium falciparum from a blood cell-depleted 
sample and the bioterrorism agent Francisella 
tularensis from abscess pus [102, 103].
NGS is an ideal tool in epidemiological typing since 
the typing of bacterial strains is crucial to study 
the transmission pathways and identify the single 
genomic alterations between two isolates [104]. 
Identification of the toxins known to cause severe 
diseases such as toxic shock syndrome caused by 
Streptococcus spp. is an important field in clinical 
microbiology performed by WGS [105]. Therefore, 
NGS technologies are helpful in various fields in the 
clinical microbiology.

Future Directions
In the near future, NGS technologies are very 
helpful for clinical purposes. The fast and high 
throughput sequencing method is considered as a 
good diagnostic and prognostic tool, which helps 
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clinicians determine specific features in each patient, 
and opens the road towards personalized medicine. 
But similar to other new technologies, there are still 
many technical, analytical, and ethical issues that 
need further processing.

CONCLUSIONS
NGS technologies represent a revolutionary tool for 
numerous applications and can produce multiple 
repeats in a single run. These technologies are 
increasingly used in various fields such as genome 
and transcriptome sequencing, polymorphism 
detection, mutation mapping, DNA methylation, 
histone modifications, alternative splicing 
identification, small RNA profiling, DNA-protein 
interactions, protein-protein interactions, sequencing 
of the mitochondrial genome, personal genomics, and 
diagnosis and treatment of common diseases due to 
their speed, cost-effectiveness, and high-throughput 
nature. DNA sequencing technologies are used as 
a clinical diagnostic tool and it takes the support 
systems at least a decade to develop and validate data 
analysis and interpretation for clinical diagnostic use.
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