
A Survey on Random Walk-Based Stochastic Modeling 
in Eukaryotic Cell Migration with Emphasis on its 
Application in Cancer

Fateme Safaeifard1, Seyed Peyman Shariatpanahi1,*, Bahram Goliaei1

1  Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

* Corresponding author: Seyed Peyman Shariatpanahi, Institute of Biochemis-
try and Biophysics, University of Tehran, Tehran, Iran,  
Email: pshariatpanahi@ut.ac.ir

January 2018, Volume 2, Issue 1

Multidisciplinary Cancer Investigation Review Article

DOI: 10.30699/acadpub.mci.2.1.1

Submitted: 5 July 2017

Revised: 17 September 2017	 

Accepted: 10 October 2017

ePublished: 01 January 2018

The Eukaryotic cell migration, a complicated pro-
cess, which is highly regulated by molecular path-
ways, plays a significant role in organogenesis and 
tissue development. Most cells demonstrate orient-
ed or random migration in vitro, although they may 
have been extracted from tissue composed of immo-
bile cells [1]. Cell migration disorders in developed 
organisms are mostly associated with impairments, 
such as cancer cell metastasis, immune diso-rders, 
and wound healing deficiency. Particularly in cancer, 
cell migration depends on the incidences of specific 
mutations [2] where extensive movement occurs in 
metastatic cells [3]. In addition, some studies have 
indi-cated that patients developing tumors with the 
elevated levels of tumor-infiltrating cytotoxic T lym-
phocytes have improved response to the treatment. 
In this regard, one of the main goals of cancer im-
munotherapy is to control tumor-immune system in-
teractions [4].
The leading studies on cell migration process are fo-
cused on fibroblasts, keratinocytes, and myoblasts. 
Despite some differences in the migration process of 
various eukaryotic cells, studies have revealed basic 
similarities in the mechanisms involved in morpho-
genesis, wound healing, immune response, and can-
cer cell metastasis [5]. The quantification of these 
similarities and differences helps in categorizing and 

modeling of the process. These models predict the 
migration properties and help in understanding the 
speed of cell motion-dependent processes, such as 
metastasis, the characteristics of an optimum migra-
tion behavior for effective interaction between lym-
phocytes and infectious cells and tumor, and the mi-
gration ability of tumor cells considering the spatial 
heterogeneity of tumor.
At present, mathematical modeling and numerical sim-
ulations are abundantly applied as complementary to 
in vitro investigations. Despite the perpetual necessity 
of experimental approaches for understanding bio-
logical processes, in silico experiments can comple-
ment these assays by limiting the measuring space 
and reducing the experiment cost [6–8].
The main advantage of in silico computational mod-
els is the simultaneous analysis of several depen-
dent variables that presently seems unatt-ainable 
experimentally. The evaluation of the relationships 
of systems’ variables, in spite of non-linear dynam-
ics, facilitates more compreh-ensive and accurate 
analyses of experimental observations. In addition, 
mathematical models can identify key parameters, 
determining the ultimate behavior of the system and 
suggest the most precise experiments for system as-
sessment [9]. 
The processes associated with cell migration are in-
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fluenced by several closely related factors such as 
extracellular matrix, tissue architecture, and differ-
ent cell characteristics. These factors determine the 
ultimate mode of cell movement in an integrative 
manner [10]. The time-lapse microscopy of living 
cells, followed by the applicat-ion of image process-
ing algorithms, conventionally introduces a typical 
cell migration study. The image processing proce-
dure is initiated with the application of image pre-
processing algorithms to enhance signal-to-noise ra-
tio and improve image quality. The application of the 
algorithms generally depends on the type of applied 
microscopy technique. The next step is to track the 
cell migration path and quantitatively estimate cell 
motility behavior using image processing software 
and tools [11]. The methods may include particle 
tracking techniques relied on image segmentation 
algorithms [12,13], fitting  particle path curve to an 
evolving model, and minimizing the relevant energy 
functions [14], as well as the estimation of cell pros-
pect using the posterior density function of cell states 
derived from Monte Carlo sampling methods [15]. 
The procedure terminates by recording cell spatial 
coordinates over the time and quantifying cell mo-
tion based on reconstructed trajectories. According-
ly, a set of parameters and quantities such as speed, 
rotation angle, and distance traveled can be derived 
for inferential data analysis [11]. At present, various 
software tools are available for digital image pro-
cessing where some of them implement algorithms 
adapted for the analysis of migrating cells.
Cell movement is a stochastic process and the deri-
vation of its descriptive parameters requires a clear 
discrimination of stochastic patterns relied on the 
rules governing random models, such as random 
walk. This field of applied mathematics is increas-
ingly used to model biological systems, in particular 
in ecology (animals’ movement) and pathophysiolo-
gy (cell movements, particularly to form blood ves-
sels and metastasis). The main advantage of random 
walk models is its ability to differentiate migration 
characteristics through intuitive data by which dif-
ferent cell migration mechanisms can be better un-
derstood [16]. 
The time series analysis of cell trajectories provides 
quantitative data for the reconstruction of cell-specif-
ic motility models. Such macroscopic models of cell 
behavior with the microscopic properties of cellular 
dynamics, such as cytoskeletal changes, cell contrac-
tion forces, and the dynamics of adhesion molecules, 
define the systems biology of cell motility [17].

The Simple Random Walk Model (Diffusion 
Equation)
The Brownian motion is the foremost example of 
a random process (Figure 1a), which follows the 
simple random walk rules. In the simplest case, a 
particle in one-dimensional space can move from 
the origin with the same probability of left to right 
and right to left motions, where its displacement, 
Δx, is constant in constant discrete time intervals. 
In this model, particle movement does not depend 
on its previous and current positions, as well as on 
time; thus, the average displacement after time T is 
zero. Hence, to define a significant variable for the 
amount of displacement, the mean squared displace-
ment (MSD) of the particle after a walk of N steps is 
a more suitable statistical quantity [18]. The quantity 
is calculated using the following formula:

( ) ( ) ( )( )22 lim   
t

R X t X t
∞

τ τ
→

= 〈 + − 〉         (1)

where |X(t+τ)-X(t)| is the particle displacement be-
tween two steps in the time series, t is the total time 
of the walk, and τ is the time interval between the 
successive steps [19]. MSD indicates the average 
walker distance from the original position as a func-
tion of t [20].
For a simple random walker model, we have R2(τ)=2D-
nτ, where D is the diffusion constant and n is the spa-
tial dimension [18]. Noting that the evaluation of sta-
tistical variables in a complex set of random walkers 
leads to the spatiotemporal continuity of non-random 
variables. Such continuous processes are expressed 
by diffusion models derived from Brownian motion 
[21]. Specifically, Einstein in 1905 demonstrated 
that the random motion of particles at microscopic 
levels can perfectly express the inter-relationship 
between macroscopic parameters, such as diffusion 
coefficient, viscosity, and temperature [22,23]. 
The simple random walk model has repeatedly been 
used as one of the simplest random models of cell 
migration. Although this model provides a naive ex-
pression for cell migration, it is satisfactory in some 
cases to express cell migration aspects and diffusion 
processes using the pure random walk model. For 
example, the organization of human mesenchymal 
stem cells on nanotopographical surfaces can be sim-
ulated on the basis of a simple random walk model. 
The results of such stimulations predict the regular 
and irregular cellular organizations for low and high 
cellular densities, respectively [24]. 

Generalization of Simple Random Walk Model
In most cases, the movement of individual cells is 
not attributed to the simple random walk behavior. In 
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such cases, the evaluation of MSD function results 
in a more generalized equation, which is as follows:
 ( ) ( ) ( )( )22 lim     

t
R X t X t α

∞
τ τ τ

→
= 〈 + − 〉 ∝    (2)

In this generalized model, the diffusion phenomenon 
is categorized on the basis of the parameter α. When 
MSD is the linear function of time (α = 1), we ob-
tain the normal diffusion characteristic. If α>1, the 
process is called super-diffusion (rapid diffusion), 
whereas α<1 represents sub-diffusion (slow diffu-
sion) phenomena [25].
In addition to MSD, velocity autocorrelation func-
tion is studied as another statistical average to in-
vestigate the random walk characteristics as defined 
elsewhere [26]:

( ) ( ) ( )
( )2limV t

V t V t
C

V t
τ

τ
→∞

〈 + 〉
=

〈 〉
	             (3)

This function indicates the correlation between the 
velocity time series of a particle with its time-shift-
ed version. The function is expected to exponential-
ly decrease by the amount of time shift interval(τ). 
Regarding cell migration, the function indicates how 
long the cell moves in a certain direction without a 
significant change in velocity. For the simple ran-
dom walk model, the function has non-zero value 
only when τ = 0, as the successive steps in this model 
are independent [20].
In addition, the probability distribution and densi-
ty functions indicate the possible values of discrete 
and continuous random variables, respectively. The 
probability density functions of variables, such as 
velocity, step length, and angular displacement, are 
some other statistical functions, and their behaviors 
can be interpreted as different characteristics for the 
random walk model of cell motilities. In the pure 
random walk model, it is presumed that the distribu-
tion of step length and consequently cell speed fol-
low a normal (Gaussian) distribution or take a con-
stant value, whereas cell migration does not confirm 
the simple assumption in several cases.

Random Walks with Non-Gaussian Step Length 
Distributions
Walker step length can follow the desired distribu-
tion function. New assumptions for the distribution 
function of random walk steps can result in super-dif-
fusion or sub-diffusion phenomena, irrespective of 
steps correlation. In contrast to the classic random 
walk with a normal distribution with finite variance, 
Levy walk has Levy flight distribution function with 
infinite variance. The distribution function reduces 

with the power law ( )  f l ~ l−µµ (1<μ<3), where l is the 
step size. Evidently, although long steps are signifi-
cantly less than short ones, they are relatively much 
more frequent than the normal distribution (Figure 
1b). Levy walk is considered a scale-free random 
walk, as the power law distribution of step length 
shows similar behaviors in different spatial scales 
[27]. In addition, the scale-free nature provides spe-
cial functionalities as a characteristic of several bio-
logical phenomena, such as fractal pattern in human 
blood vessels [28].

 

Figure 1: Schematic View of Walker Trajectories in (a) a Pure 
Random Walk, (b) Levy Walk, (c) Biased Random Walk, and (d) 
Persistent Random Walk.

It was suggested that lymphocytes motility into the 
brain does not follow Brownian statistics but can be 
described satisfactorily on the basis of the general-
ization of Levy walks. The model captures run and 
pause phases observed in lymphocytes motility. Such 
migration enables cells to identify rare far goals with 
more than 10-fold efficiency; compared to Brownian 
motion, this migration strategy is similar to that of 
monkeys and marine predacious [29].
 In addition, the motility of hydra cells is super-diffu-
sion, with non-Gaussian velocity distribution in both 
ectodermal and endodermal tissues. The diffusion of 
hydra cells can be explained as a correlated type of 
anomalous diffusion using Tsallis statistics [30,31].
In addition to Gaussian and Levy distributions, other 
statistical distributions have also been used to ex-
press the specificity of cell migrations; for instance, 
the migration of normal and tumor melanocyte cells 
in mice demonstrates a transition from a normal 
diffusion (α = 1) to super-diffusion (α>1) without 
a long-time angular persistence. The non-Gauss-
ian velocity distribution of the cells introduces a 
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q-Gaussian model of migration and simulation of 
cell trajectories. The model perfectly reproduces the 
displayed transition phenomenon [17]. Moreover, 
the migration study of normal and tumor epitheli-
al cells derived from Madin-Darby canine kidney 
(MDCK) cell line revealed the diffusion anomaly of 
the cells. The evaluation of the cell speeds indicat-
ed that velocity proportions generated a q-Weibull 
distribution, an extension of the Weibull distribution 
accounted for Tsallis distribution function:

( )
rr 1

qw 0 qr
0 0

rx xp x p exp
x x

−   
 = − 
   

        (4)

where the q-exponential expression (expq(x)) equals 

to
1

1 q[1 (1 q)x] −+ − . Podesta et al. showed that the 
cell density variations result in the alternation of the 
shape parameters of the distribution (r and q) in a way 
that the distribution function inclines to Maxwellian 
distribution as the density of the cells increases [32].
Biased Random Walk Model
The directionality of locomotion in response to fac-
tors, such as the mechanical properties of the envi-
ronment and the concentration of particular chem-
ical compounds, is one of the vital characteristics 
of some eukaryotic cells [33–35]. Such migration is 
characterized on the basis of the non-uniform distri-
bution of steps orientation [27]. Chemotactic move-
ment, the most stated example of this migration 
pattern, can be found in specific types of eukaryotic 
cells (Figure 1c) [33,36–38]. For instance, experi-
mental assessments indicated that the chemo-taxis 
of neutrophils in three-dimensional culture systems 
supported the predictions of the biased random walk 
(BRW) model for this migratory behavior [39]. The 
evaluation of B-cells› chemotaxis revealed that the 
highest chemotactic responses correspond to the me-
dium gradient of chemokines, and thus, the autocor-
relation function showed slower decrease than gentle 
and rigorous gradients [40].
In addition, spatial constraints affect the coordinated  
According to the average dynamics of single cells 
in the colonies of HeLa cells and its dependence on 
spatiotemporal heterogeneity associated with growth 
geometry, Muzzio et al. suggested that cell mobili-
ty was achieved by a concerted mechanism. In this 
mechanism, two limiting elements with a random 
walk and ballistic motion (α>1) participate to form 
a BRW migration. The directional biases in single 
cell motion influence the dynamics of the two-di-
mensional colony development and their specific 
characteristics [44]. 

Furthermore, the experimental findings revealed 
a migration tendency of cells toward the stiffness 
gradient of the extracellular matrix. However, dif-
ferent assays confirmed the increased directional 
persistence of migrating cells with increasing matrix 
stiffness [45,46]. On performing random walk-based 
simulations, Novikova et al. uncovered that the net 
flow of the cells is the conclusive outcome of the 
persistence subordination of matrix stiffness [47].

Persistent Random Walk
In the pure random walk model, step orientation, as 
well as turning angles, is considered to be indepen-
dent of the trajectory in each step. In more realistic 
models, the natural attitude of the cell to preserve 
the last step’s orientation is specified by the non-uni-
form distribution functions of turning angles [27]. 
Signaling pathways lead to the formation or destruc-
tion of cytoplasmic appendages (lamellipodia and 
filopodia) in the cell migration process mainly by 
the activation or deactivation of factors associated 
with the formation of actin filaments organization in 
the different areas of the cell membrane. The local 
activity of protein network involved in cell motili-
ty discovers the mechanism of the directional per-
sistency of the cell migration through responding 
to local mechanical (through cell matrix adhesions) 
and chemical signals, as well as branching new ap-
pendages of the older ones. This branching proposes 
a positive feedback mechanism by which migration 
occurs persistently in the absence of any external 
signal (48–50). As assumed in the persistent random 
walk (PRW; also called correlated random walk), the 
cell persists in its direction of motion in some times-
cales, whereas displays a type of random movement 
along its trajectory in longer time scales (Figure 1d) 
[51]. Consequently, in the MSD diagrams, a contin-
uous change from a more ballistic behavior (α>1) for 
shorter time intervals to Brownian motion pattern 
(α=1) for longer time distance is observed [52,53]. 
Notably, because of this discrepancy in different time 
lags, in cell migration studies, sampling time inter-
vals may influence the results of statistical analyses 
of the obtained time series. Rosser et al. (2013) used 
a stochastic model to study the distribution of veloc-
ity and turning angles found from different sampling 
intervals. The results showed that changing time in-
tervals considerably changes the above quantities up 
to several orders of magnitude [54].
The motion of several individual cells can be evalu-
ated on the basis of the PRW model. In this regard, 
several efforts were made to model the involved 
mechanisms to elucidate the dependence of two con-
secutive steps in a random motion. Several models 
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cover the cell membrane fluctuations as a stochastic 
factor and actin network orientation as a persistence 
factor. For instance, Caballero et al. showed that the 
direction of cell motion is predictable using a statis-
tical analysis derived from the dynamics of cytoplas-
mic appendages. The developed model indicated that 
asymmetry in the fluctuations of membrane protru-
sions was sufficient to predict the data obtained from 
the motion called biased PRW [55]. 
Furthermore, a model was developed by Cooper et 
al. (2012) on the basis of cell excitability and plas-
ma membrane retention to describe the mechanism 
of the directional persistence of the cells employing 
a zigzag model of the consecutive formation of the 
protrusion. Considering the spatial limitation of cell 
membrane after pseudopod formation, as well as the 
excitation memory in the area of older pseudopod, 
their model could reproduce experimental data on 
cell migration. In addition, comparison of the predic-
tions of this model with the experimental data indi-
cated that the pseudopod formation was a non-Mar-
kovian process influenced by the dynamics of older 
pseudopodium [56].
Another model was proposed to survey the physi-
cal basis of the migration of amoeboid cells, such 
as Dictyostelium, and the epithelial cells of MDCK 
as well. In this model, the accumulation of actin po-
lymerization inhibitors in the tail end of the cell acts 
as the operant of forwarding persistent motion. In 
addition, the density fluctuations of these molecules 
along with membrane drops and rises are considered 
as the random factors, influencing the directional-
ity and reorientation of the cell. The combination of 
the stochastic turns and directional motions resulted 
in the anomalous diffusion (super-diffusion) of the 
cells in signal-absent conditions [57,58]. Further-
more, the analysis of the probability distribution of 
the angles between pseudopods illustrates another 
method to develop a stochastic model for the mech-
anism of cell mobility inspired from the correlated 
random walk. For example, a Monte Carlo simula-
tion is proposed that incorporates the proportion of 
the number of pseudopods bifurcating from the older 
ones to the number of randomly formed de novo pro-
trusions, pseudopodium’s directional alteration (left 
to right and vice versa), their angular separation, and 
the angle variance [59].
Moreover, it is shown that cellular persistence is an 
exponential function of speed; this general rule can 
be explained on the basis of a physical model of cell 
polarity changes along with actin network dynam-
ics [60] and its effect on cell directional persistency. 
This model can predict a general phase diagram of 

cell trajectories, which reproduces a full range of ob-
served migration patterns [61].
 In some cell populations, a combination of simple 
random walk and PRW models can be used to ex-
plain cell migration properties; for example, lym-
phocytes migration is predictable considering such 
two-population models. However, the application 
of PRW model for exploring motile lymphocytes 
in lymph nodes, in general, had been confirmed ex-
perimentally [62,63], It was shown that CD8+ T-cells 
migration in non-inflamed lymph nodes does not 
completely comply with the PRW model. In turn, 
the two-population model, suggested by Banigan et 
al., attributes Brownian motion and variable PRW 
model with noise to different cell populations, and 
can predict the experimental statistical properties of 
the migration of such cells. The discrepancy between 
two-population model and the model proposed to de-
scribe active T-cells migration inside inflammatory 
brain demonstrates the discordance of statistical fea-
tures related to lymphocytes migration in different 
tissues [29,64].
In addition, in a study on the motility of B lympho-
cytes in germinal centers, O’Conner et al. showed 
that unlike the random motion of inactive B-cells, 
active B-cells show biased motility and the slope of 
their MSD plot accepts an α-value of more than 1 
[65]; this is similar to the behavior of primary blood 
cells, which follow the PRW migration model to 
reach medullary cords [66].
The capability of direction retention, inducing per-
sistent random motion, results in some complicated 
behaviors in several cells. The migration behavior 
of an amoeboid eukaryotic cell was investigated in 
the absence of chemotaxis signals, and the results in-
dicated that the cell displayed a particular model of 
random motion under following circumstances: long 
intervals of straight motion and frontward movement 
with zigzag steps. The motion comprises the consec-
utive phases of run and turn and the migrating cells 
have a directional memory of one step. The distri-
bution of traveled distance and turning magnitude 
can be fit to an exponential function. This migration 
model can increase the chance of acquiring targets, 
compared with Brownian motion [52,67].
The physical properties of the environment influence 
the migration of individual cells (68). Regarding the 
migration of hydra cells in ectodermal and endoder-
mal communities, Rieu et al. (2000) applied the stan-
dard statistical analyses and accordingly showed that 
the cell motion can be explained in both structures 
on the basis of the PRW model. Different diffusion 
coefficients were found for the two communities, 
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where the smaller diffusion coefficient for the endo-
derm indicated its more adherent structure [69].
In addition, the effect of interstitial flow on cell mi-
gration demonstrated that increased flow changes 
breast tumor cells to an amoeboid phenotype. The 
evaluation of the heterogeneity of migratory pheno-
types of cells subjects to different interstitial flow in-
tensity and ascertains other random walk character-
istics for amoeboid and mesenchymal phenotypes, 
among them was distinct directional persistence in 
two mentioned migration modes [70,71].

GENERALIZED PERSISTENT RANDOM WALK 

Persistent Random Walk Models with Non-Gauss-
ian Step Length Distribution
In this generalization, the assumption of the constant 
or Gaussian step length has been reduced; hence, the 
distribution of steps length may follow an arbitrary 
function. 
For instance, by the evaluation of the migration of 
human breast epithelial cells, the bimodal correlated 
random walk model as an alternative to the simple 
PRW model was proposed. This model of movement 
comprises two types of correlated flights with expo-
nential distribution: a first directional phase that can 
be replaced by a second reorientation phase succes-
sively [6]. 
Additionally, while investigating the motion of T 
lymphocytes in lymph nodules, Fricke et al. reported 
that likewise Brownian motion, Levy walk is not a 
full descriptive model of migration. As an alterna-
tive, they suggested a correlated random walk with 
the peculiar distribution function of step length. The 
lognormal distribution function of velocities, as well 
as steps length, short-term directional persistence, 
and heterogeneity of cell mobility patterns, are main 
properties that enhance the proficiency of this mi-
gration pattern. The evaluation of the average veloc-
ity of studied T lymphocytes revealed that T-cells 
show a continuous pattern of motion, which results 
in the defined search strategies: cells have a relative-
ly smaller average velocity with a heavy-tailed dis-
tribution that permits them to have few long-range 
steps. The velocity distribution of mentioned cells 
shows the most compliance with lognormal distribu-
tion with parameters µ and σ that equal to 0.48 and 
0.91, respectively:

 
       

( )
( )2

2
ln x µ
21y f x | µ, e

x 2

− −

σ= σ =
σ π

σ=0.91,µ=0.48                      (5)
The significant characteristic of the distribution is its 

high measures of skewness and kurtosis in contrast 
to the fast cells that indicate a more Gaussian-like 
distribution with lower amounts of skewness and 
kurtosis. In addition, agent-based simulations de-
picted that the lognormal modulated PRW has the 
maximum compliance with the observed efficiency 
of migrating T cells, following dendritic cells. This 
migration behavior presents a balance between the 
accuracy and amount of distance traveled by the cells 
[72]. Moreover, the findings confirm the hypothesis 
of migration heterogeneity among the T-lymphocyte 
population [64].

Persistent Random Walk of Cells as Heteroge-
neous Time Series
In some cases, the temporal homogeneity of cell mi-
gration properties should be considered by the mod-
els. For instance, epithelial cells may find the move-
ment potential through a process called epithelial to 
mesenchymal transition that occurs in cancer cells 
metastasis [73,74]. To model cell migration based 
on time-dependent quantitative properties, one of 
the possible approaches is the estimation of statisti-
cal variables through time; Bayesian inference, de-
veloped in the shadow of Bayesian statistics, can be 
used for this propose. The Bayes theorem relates the 
probability distribution of a random variable without 
any knowledge of observations (prior distribution) 
to its probability distribution after the observation of 
the event (posterior distribution). Applying Bayesian 
inference method, based on Bayes theorem, the sta-
tistical properties of random variables can be updat-
ed after an initial estimate of their distribution [75].
Metzner et al., resembling the cell migration phe-
nomenon as a random walk with time-varying sta-
tistical parameters, showed that the time dependent 
parameters can be estimated in consecutive steps of 
obtained time series using the sequential Bayesian 
inference method. The parameters of the migration 
model studied were cellular activity and persistence 
that showed considerable fluctuations through inves-
tigated cell trajectories. The possibility of evaluating 
the effect of environmental characteristics on cells 
motility is another result obtained using sequential 
Bayesian inference method [76]. 
In addition, it has been shown that a Bayesian infer-
ence schema can be established to evaluate the ac-
cordance between a class of random walk and the ob-
served cell trajectories’ data. Within this framework, 
the migration patterns of zebrafish macrophages and 
neutrophils showed distinct random walk models 
whose amounts of directional persistence were spa-
tiotemporally modulated [77].
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Anisotropic Persistent Random Walk 
The PRW model cannot be considered as the best 
description for the motility profile of all cell species. 
A more comprehensive model can be developed 
considering generalizations, such as the heterogene-
ity of migration behaviors among cell population, as 
well as excluding the assumption of spatial isotropy 
in velocities of the cells. The migration pattern of 
fibrosarcoma cells in two-dimensional and three-di-
mensional cultures showed some deviations from 
the PRW model, among which is the non-Gaussian 
distribution of speeds that emerge from the hetero-
geneous nature of cell migration. Wu et al. suggested 
that two-dimensional migration statistics can be well 
predicted by the PRW model considering different 
model parameters for individual cells. However, the 
simulation results showed that predicting three-di-
mensional cell migration characteristics, addition-
ally, requires the attribution of different persistent 
times and speeds to the primary and non-primary di-
rections of movement. The anisotropic PRW model 
perfectly predicts the migration behavior of the cells. 
[78]. 

Reinforced Random Walk
In this model, it is assumed that the walker moves 
on a weighted graph. The probability of choosing 
the edges connected to the vertex is proportional to 
the weights attributed to them. In addition, after each 
walk through an edge, the weight may increase [79]. 
This weight amplification can be interpreted as the 
creation of a cell pathway in the extracellular matrix 
in such a way that the probability of cell migration in 
the certain direction increases. Similarly, adding the 
appropriate initial weight to the edges of the graph, 
a phenomenon such as chemotaxis can also be mod-
eled on the basis of this type of random walk [80,81]. 
Angiogenesis is one of the physiological process-
es illustrated by this model. A mathematical mod-
el based on the theory of reinforced random walk 
developed by Plank et al., (2002) successfully de-
scribed the migration of vascular endothelial cells in 
response to different angiogenesis factors. Accord-
ing to this model, endothelial cells initially form a 
spherical community in which all cells can move on 
a regular graph. Chemotaxis responding to vascular 
endothelial growth factor (VGEF) and haptotaxis 
responding to collagen concentration are modeled 
by adding proper weights to the edges of the graph, 
proportional to the concentration of the components 
[82]. Moreover, hybrid models proposed to map 
VEGF-depended angiogenesis consider that VEGF 
concentration changes in addition to modeling che-

motaxis of endothelial cells using the reinforced ran-
dom walk. For example, it is reported that the hybrid 
model was able to predict the threshold concentra-
tion required to stimulate the quiet cells for a biased 
motion, as well as the optimum concentration for 
their movement [83].

Stochastic Langevin Equations
The application of stochastic differential equations is 
another approach to describe the stochastic properties 
of cell migration phenomenon. The stochastic Lan-
gevin equation characterizes the walker movement in 
a viscous environment under the influence of stochas-
tic forces. The Ornstein–Uhlenbeck (O–U) process, 
as the solution of Langevin equations, is a random 
process evolved from Brownian motion to model the 
velocity of particles in the fluid as a continuous time 
random walker [84,85].
This O–U process incorporates two factors influ-
encing particle velocity: the frictional resistance of 
a particle in the fluid proportional to its velocity and 
stochastic factors such as thermal noise and the ran-
dom hitting from the particles around [20,84]. The 
applications of both the continuous and discrete rep-
resentation of O–U process have been investigated 
in cell movement studies [86–89].
The cell motion equations derived from the Langevin 
equations for a Brownian particle are expressed as 
follows:

                    ( ) ( )dx t
v t

dt
=                          (6)

 
             

( ) ( ) ( )dv t
âv t á î t

dt
= − +

         (7)

where β and α express the intensity of viscous and 
random forces, respectively, and ξ(t) is a random 
term with specified distribution. By adding an ex-
pression to the second equation, the effect of concen-
tration gradient of chemotactic molecules can also 
be included. The statistical analysis of the process 
indicates that the two involving parameters, α and β, 
are in association with two cell motility parameters, 
namely, cell speed and persistence time [87,88]. 
A dynamic model proposed by Liang et al. (2011) on 
the basis of the experimental data from Dictyosteli-
um cell migration could successfully depict the sta-
tistical characteristics obtained from cell trajectories. 
In this model, using the O–U process, two stochastic 
Langevin differential equations were recommended 
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to model the random alternative emergence of pseu-
dopods, perpendicular and parallel with the direction 
of motion [90].
However, there are some inconsistencies between 
O–U process predictions and the mobility behav-
ior of some cells, such as fibroblasts and keratino-
cytes. Eventually, cell specificity can be explained 
by attributing cell-specific values to the parameters 
included in the model. The specificity of the mod-
els indicates that the different migration modes of 
certain cells can be elucidated by applying relevant 
models where differences are considered in the val-
ues of the model parameters [91,92].

CONCLUSIONS

Due to the importance of the cell migration process, 
particularly in the initiation and development of dis-
eases such as cancer, cell migration models have 
considerably attracted attention in recent years. The 
mathematical models based on stochastic processes 
were among the ones that showed their ability in the 
statistical characterization and classification of cell 
migration. This study aimed to describe the charac-
teristics and potentials of different types of random 
walk models regarding the migration of eukaryotic 
cells. For this purpose, we attempted to classify 
modeling approaches and introduce the models’ ap-
plication to explain the migration process in different 
cells. Table 1 briefly shows the different types of the 

developed models.
 In conclusion, studies indicated that the modeling 
of cell migration on the basis of the mathematical 
rules in stochastic processes and random walk mod-
els revealed some differences and similarities among 
cell migration strategies in different cell species and 
under distinct environmental conditions.
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Table 1: Random-Walk Models in the Migration of Eukaryote Cells

Random Walk Model Eukaryote Cells

Simple Random-Walk Model Inactive B-Cells on Germinal Centers [65]

Random Walks with Non-Gaussian Step-Size Distributions

The Q–Gaussian Random-Walk Model Normal Melanocytes and Melanocytic Tumors in Mice [17]

The Q-Weibull Random-Walk Model Normal Epithelial and Epithelial Tumor Cells [32]

Generalized Levy Walk Lymphocytes in Brain [29]

Anisotropic Random-Walks

Persistent Random-Walk Model Lymphocytes in Lymph Nodes [63]
Hydra Cells in Cellular Communities [69]

Reinforced Random-Walk Model Vascular Endothelial Cells [82]

Biased Random-Walk Model Chemotactic Migration of Neutrophils [39]

Bimodal Correlated Random-Walk Model Human Breast Epithelial Cells [6]

Lognormal Modulated CRW T Lymphocytes [72]

Persistent Random-Walk Model of Cell as a Heterogeneous Time Series Breast Tumor Cells [76]

Anisotropic Persistent Random-Walk Model Fibrosarcoma [78]

Stochastic Langevinequations Dictyostelium [90]
Fibroblasts and Keratinocytes [92]
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