Supplement Issue1: International Tehran Breast Cancer Congress (TBCC9)

Piwil2: an IMPORTANT Regulator of Cancer Stem Cells in Breast Cancer Cell Line, MCF7-Piwil2

Fereshte Akbari¹, Seyed Hamid Jamaldini¹, Maryam Shahali^{2,*}

¹ Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran

² Pasteur Institute of Iran- 1- Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran

*Corresponding Author: Maryam Shahali, Pasteur Institute of Iran- -1 Department of Quality Control, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran. E-mail: maryam.shahali@gmail.com

DOI: 10.21859/mci-supp-62

Keywords:	Abstract
Piwil2	Introduction: Piwil2 belongs to Piwi protein subfamily, which functions in PIWI/piRNA
Cancer Stem Cells	pathway and plays crucial roles in gametogenesis in different organisms. Recent studies
Breast Cancer	have demonstrated that PIWIL2 is ectopically expressed in tumor cell lines and various
	stages of different cancers, remarkably in cancer stem cell (CSCs). However, it is not clear
	whether Piwil2 has a causing role(s) in development of CSC populations or it is as a conse-
	quence of cancer. Thus, to further investigate the biological roles of Piwil2 in the process of
	tumorigenesis especially in cancer stem cells development, we established the MCF7-Pi-
	wil2 cell line stably expressing Piwil2.
	Materials and Methods: MCF-7 cell line was transfected with a construct containing Pi-
	wil2 cDNA. Stable transfectants were selected and the effect of Piwil2 on its molecular
	behavior was investigated by semi-quantitative RT-PCR and qRT-PCR.
	Results: The MCF7-Piwil2 cells demonstrated higher and lower expression of CSC bio-
	markers of CD44 and CD24, respectively, compared to MCF-7. We also examined CD133
	expression and observed an increase in MCF7-Piwil2 cells. Totally, our molecular data
	were consistent with piwil2 reprogramming role in the emergence or prevalence of cancer
	stem cell population.
	Conclusions: These observations may implicate piwil2 as an important regulator of can-
	cer stem cells population in breast cancer. However, further complementary data such as
	the results of tumorigenic in vitro and in vivo assays of MCF-Piwil2 and its comparison
	with MCF-7 cells should be collected to fully confirm the role of piwil2 in the process of
	tumorigenesis.