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Abstract
A hypothesis is proposed here that RET rearrangements in papillary thyroid cancers 
are related to the disease duration and tumor progression. The most common RET 
rearrangements are RET/PTC1 and RET/PTC3. RET/PTC1 is more prevalent in 
classic papillary thyroid carcinoma (PTC), its diffuse sclerosing variant, and papillary 
microcarcinoma; while RET/PTC3 is frequently found in less differentiated solid PTC. 
RET/PTC3 is associated with larger tumor size and multifocality in sporadic pediatric 
PTC. The RET rearrangements; especially RET/PTC3, which is frequently detected 
among Chernobyl thyroid cancers is developed after exposure to radiation at an early 
age, is proposed to be a potential trigger of malignancy. There are many late-stage tumors 
among the first-wave Chernobyl PTCs that tend to be larger and less differentiated than 
those detected later. The high proportion of late-stage cases shortly after the accident 
is explained by the neglected cases in the screening process and also by the fact that 
some non-exposed patients were registered as radiation-exposed. The screening was 
productive because of the reservoir of undiagnosed cases in the population: registered 
incidence of thyroid cancer (TC) among children and adolescents prior to the Chernobyl 
disaster was low in the Soviet Union; compared to other developed countries. In 
conclusion, RET rearrangements, especially RET/PTC3, were correlated with the tumor 
progression. If the hypothesis defended here is correct, a low prevalence of RET/PTC3 
among sporadic TC is circumstantial evidence of efficient cancer diagnosis and early 
detection.
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The proto-oncogene RET (rearranged during 
Transfection) encodes a tyrosine kinase receptor. 
Chromosomal rearrangements that produce 
fusion genes and activate the proto-oncogene are 
named RET/PTC after the gene RET and papillary 
thyroid carcinoma (PTC). The reported frequency 
of RET/PTC rearrangements (fusions) among 
all PTCs was estimated to be around 28% [1, 2]. 
There are different RET rearrangements such as 
RET/PTC1 and RET/PTC3 as the most prevalent 
types [2, 3]. RET/PTC3 was associated with the 

solid morphologic variant of PTC, larger tumor 
size, and multifocality in sporadic pediatric PTC 
[4]. Generally, RET rearrangements are more 
prevalent in classic PTC than in the follicular 
type which may be caused by distinct oncogenic 
pathways and/or by an admixture of true follicular 
thyroid cancers (TC). Approximately, 9% of 
poorly differentiated thyroid carcinomas harbor 
RET/PTC [2]; indicating that some of them are 
developed from PTC with RET fusions [1]. The 
potential role of RET mutations in non-papillary 
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thyroid tumors is beyond the scope of this 
communication. A hypothesis is proposed here 
that RET rearrangements in PTC are related to the 
disease duration and tumor progression. In this 
regards RET/PTC3 is associated with late-stage 
tumors as compared with RET/PTC1. PubMed 
and Russian-language databases were applied for 
the literature review; using RET/PTC and thyroid 
cancer as the keywords. Lack of enough data in 
epidemiological research of low-dose radiation 
and inter-study heterogeneity i.e. uneven quality 
of studies analyzed together in reviews and meta-
analyses are among the potential biases [5-7]. 
The reliability of research is sometimes difficult 
to be evaluated. According to Little et al., studies 
of questionable reliability “should therefore 
probably not be used for epidemiologic analysis, 
in particular [8-12]”. The exaggeration of the 
medical consequences of the Chernobyl disaster 
and other radioactive contaminations were 
previously discussed [13-17]. Overestimated 
numbers of radiogenic cancers were served as a 
motive to search for markers of radiation-related 
malignancies; while RET rearrangements were the 
main candidates for this role. The core hypothesis 
presented in this research and preceding 
papers was that some neglected TCs have been 
misinterpreted after the Chernobyl accident as 
rapidly growing radiogenic cancers [13-17]. 
Accordingly, the supposed markers of radiogenic 
etiology are in fact associated with longer disease 
duration and tumor progression. This concept has 
more general implications: if it is correct, a low 
percentage of RET/PTC3 among spontaneous TCs 
could be considered as circumstantial evidence of 
efficient diagnosis and early tumor detection in 
different countries.

Association of RET/PTC With Radiogenic and 
Advanced TCs
The RET fusions, especially RET/PTC3, are 
frequently found in PTC of patients who have 
been exposed to the Chernobyl disaster at an early 
age [18, 19]. These markers are supposed to be 
potential indicators of radiation-related TCs [20]. 
There was an association between RET/PTC3 and 
a solid histological structure that was prevailed 
in PTC during the first 10 years after the accident 
[19, 21]. The years 1986-96 approximately 

corresponded to the “first wave” post-Chernobyl 
TCs [18, 19, 21]. There were many late-stage 
cancers among the first wave cases. In a study from 
Belorussia (1986-91, 86 pediatric TC), 61.5% of 
cases had high or intermediate grades of TC. In 
another study (1991-92, 84 pediatric TC), the 
cancers were reportedly aggressive, accompanied 
by intraglandular tumor dissemination (92%), 
cervical lymph node metastases (88%), and 
ingrowth into the capsule and surrounding tissues 
(89%). In a study from Ukraine (1986-96, 244 
pediatric TC), T4 (TNM stage) was found in about 
50% of cases with a proportion of 66-71% in 
adolescents; more references are in the preceding 
review and the monograph [13, 15]. It can be 
reasonably assumed that many of these tumors 
have been developed prior to the Chernobyl 
disaster. The first wave TCs tended to be larger 
and less differentiated than those detected later 
[21], one of the reasons may be the admixture of 
advanced cases. According to Yablokov et al., as a 
crucial study, Chernobyl TCs are more aggressive 
at early stages with high lymphatic invasiveness 
[22]. The thyroid screening after the Chernobyl 
disaster was yielding due to the reservoir of late-
stage cancers in the population: the detection rate 
of pediatric TC prior to the accident was lower in 
the Soviet Union (SU) than in other industrialized 
nations [23, 24]. Besides, there was an endeavor 
to be recognized as victims of Chernobyl to avail 
of compensations). Cases from non-contaminated 
areas must have been averagely in more advanced 
stages due to the lack of screening modalities 
in those areas. The post-Chernobyl pediatric 
TC were predominantly of papillary type often 
containing areas with less differentiated solid and 
follicular patterns, indicating that the “first wave” 
post-Chernobyl TC was diagnosed averagely 
at a later stage. The RET/PTC fusions were 
associated with the T3-4 stages, local recurrence, 
and distant metastases [25]. These features in 
children and adolescents tended to correlate 
with RET/PTC3 rather than RET/PTC1 [20]. 
RET/PTC3 was associated with aggressiveness, 
larger dimensions, and later stages at diagnosis 
[1]. As mentioned above, the presence of RET/
PTC3 was often combined with larger tumor size 
and multifocality in sporadic PTC in pediatrics 
[4]. It was assumed that RET/PTC1 predispose 
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the patient to subsequent RET rearrangements, 
RET/PTC3 being the next frequent one [26]. A 
majority of the first-wave PTCs after Chernobyl 
harbored RET/PTC3 fusions; while 63% of the 
cancers with RET/PTC3 were detected in the first 
decade after the disaster [19]. Conversely, RET/
PTC1 was predominant after 10 years. The first-
wave TCs were less structurally differentiated 
than those found later [21]. With time passing 
after the accident, the proportion of cancers with 
RET rearrangements decreased, whereas in RET-
positive cases the proportion of RET/PTC1 grew 
with a decrease in the prevalence of RET/PTC3 
[18, 19]. The percentage of late-stage cancers 
must have been higher among early post-accident 
cases when the reservoir of neglected tumors was 
still untapped. 
As an exceptional finding, the cohort of pediatric 
PTC after the Chernobyl disaster with the 
predominance of RET/PTC3 was deemed unique 
worldwide [27]. On the contrary to Chernobyl, 
among sporadic PTC cases, the prevailing RET 
rearrangement was RET/PTC1 [3]. Of note, post-
Chernobyl cancer is unique not for the whole 
world but for industrialized countries where the 
diagnosis is generally more efficient. As expected, 
RET/PTC3 was the most frequent RET fusion type 
in the studies from the Indian Subcontinent [28, 
29]. Conversely, RET/PTC1 prevailed in PTCs 
that were developed after radiotherapy in France, 
whereas among sporadic cases both RET/PTC1 
and RET/PTC3 were rare [30]. Analogously, 
pediatric TCs from Japan were considerably 
more differentiated than their counterparts from 
Ukraine and Belorussia including the Chernobyl 
area [31]. The prevalence of RET rearrangements 
in the Japanese pediatric TCs was relatively low; 
while RET/PTC1 was more predominant [32, 33]. 
Of note, the prevalence of RET/PTC3 found by 
the screening after the Fukushima Daiichi nuclear 
accident was lower than sporadic Japanese cases 
[33]. The screening in Japan resulted in the 
detection of earlier cases, whereas the first wave 
post-Chernobyl screening found many neglected 
TCs which certifies the efficient diagnosis in 
Japan. In addition to the factors discussed here and 
in previous studies [13-17], the high-resolution 
ultrasound equipment used in Fukushima that 
was not available after the Chernobyl accident 

made its contribution to the early diagnosis [33]. 
The in vitro induction of RET fusions after cell 
irradiation was reported [20], but the doses in 
experiments were much higher than the averages 
in Chernobyl victims. The in vitro information on 
RET/PTC1 induction by doses as low as 0.1 Gy 
was singular [34]. Certain claims by Nikiforov, a 
leading co-worker of the research (34), ascribing 
the global growth of TCs incidence by the nuclear 
testing or accidents [35] are indicative of a bias 
discussed in previous papers [14, 15].

DISCUSSION
There is evidence that the frequency of RET/
PTC fusions, especially RET/PTC3, tends to 
correlate with the disease duration and a later 
stage of the tumor progression in PTC patients. 
In view of the clustering of rearranged cells, it 
was assumed that RET fusions are relatively late 
subclonal phenomenon [36], which agrees with 
the hypothesis discussed here. The RET/PTC3 
were found much more frequently in Ukraine than 
in France [37]. A worldwide decrease in RET/
PTC incidence as well as in developed countries 
over the last decades [38, 39] along with the 
growing TC detection rate [32] could be attributed 
to the improving diagnostic technologies. The 
decreasing trend may be in fact even stronger 
in view of the growing sensitivity of RET/PTC 
detection methods [33].
A relationship between RET/PTC and individual 
doses of ionizing radiation was noticed among 
Chernobyl cases [40]. Tuttle et al., found no 
associations between RET/PTC and different 
doses [41]. It is known that correlation per se 
does not prove causality, being possibly resulted 
from the dependence of diagnostic quality and 
self-reporting from individual doses [14, 15]. 
Correlations between individual doses and RET 
rearrangements among atomic bomb survivors 
[40] could be caused by a similar bias as well as 
by higher doses than in Chernobyl victims. Note 
that acute exposures to low linear energy transfer 
(LET) radiation are generally more efficient than 
protracted ones [42]. The enhanced frequency of 
RET/PTC was noticed in PTC from patients who 
had undergone radiotherapy during childhood 
[43]. Many of them were treated for cancer so 
that the doses were much higher than average 
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Chernobyl doses. The same fact pertains to the 
study [30], where the prevalence of RET/PTC 
in TC after radiotherapy for benign or malignant 
conditions was higher than that in sporadic cases. 
Of note, the hypothesis proposed here does not 
exclude a possibility of RET/PTC induction by 
radiation but foregrounds the accumulation of 
mutations with time and their association with 
certain steps of the tumor progression (RET/
PTC3 – with a later step). Despite the referencing 
of articles [16, 17] and debates at conferences, 
this hypothesis was not mentioned in the review 
[44], where it was claimed with the references 
[45-48] that RET/PTC is more frequent in occult 
cancers and microcarcinomas than in “mature 
tumors” [44]. The cited papers are not new 
(1995–2001); studies with different results and 
conclusions have been published since then. For 
example, in the study [48] from 1998, RET/PTC 
was reportedly not associated with the tumor size, 
extrathyroidal spread and metastasizing. However, 
in a later publication from the same institution, 
an association between high expression of RET/
PTC1 and the tumor size was pointed out [26]. 
Apparently, RET/PTC1 can appear relatively 
early in the course of the tumor progression 
whereas RET/PTC3 tends to arise later on. 
Furthermore, there was a report on a higher 
proportion of RET/PTC (not further specified) 
and some other cytogenetic markers (BRAF, 
RAS, PAX8-PPARγ) in T1 compared with T2-4 
stages of PTC [25]. In the same paper, it is written 
that the RET/PTC-positivity was significantly 
associated with the T3-4 stages. We inquired 
about this discrepancy by the study published 
by Yip et al., [25] and received a comment from 
Yuri Nikiforov declaring that “It’s in a way a 
moot point since the entire staging system has 
changed dramatically since 2015. RET/PTC-
positive tumors are papillary carcinomas with the 
propensity to lymph node metastasis but tend to 
occur more often in younger patients. They are 
overall considered of intermediate American 
Thyroid Association (ATA) risk for recurrence” 
(e-mail communication 19 Sept. 2019). We 
responded to the following: “The staging system 
may have changed but any staging system reflects 
the tumor progression. Do the figures “RET/
PTC: T1– 57%, T2–8%, T3–22%, T4–14%” [25] 

mean that RET/PTC disappears with the tumor 
progression? If yes, why do they disappear? 
Are mutations not supposed to accumulate with 
the tumor progression? How then RET/PTC can 
correlate with the ‘propensity to lymph node 
metastasis’? Is there indeed a discrepancy in 
the article [25] or maybe there was an artifact?” 
Yuri replied: “RET/PTC positive tumors rarely 
undergo dedifferentiation, the fusion (RET/PTC) 
is virtually never found in anaplastic thyroid 
carcinoma (ATC), so they rarely kill patients, 
yet can involve multiple lymph nodes and recur” 
(e-mail communication 20 Sept. 2019). It is known 
that malignant tumors generally tend to undergo 
progression. However, for PTC the progression 
does not mean a transformation to ATC probably 
because of different oncogenic pathways. More 
details and references are in the letter [49] 
commenting on the article [25]. Theoretically, 
a disappearance of RET/PTC-positive cells 
along with the tumor de-differentiation could be 
caused by a negative clonal selection due to the 
lower viability of mutation-bearing cells. Further 
research with reliable detection of both RET/
PTC1 and RET/PTC3 is needed. With regard to 
the data about associations of RET/PTC (RET/
PTC3 in particular) with a younger patients’ age 
[50-52], it could be speculated that TC is detected 
in young people averagely at a later stage. This can 
be caused by lower oncological alertness (doctors 
less often think on cancer examining young 
patients) or by a more rapid tumor progression in 
younger individuals. 
Many publications about Chernobyl, mentioned 
it as a matter-of-course that additional TC cases 
after the disaster were induced by the exposure 
to ionizing radiation i.e. certain studies looking 
for markers of radiogenic malignancies [53] were 
based on the premise that a large part of Chernobyl-
related cancers was of radiogenic nature. In 
fact, some proposed markers of radiogenic post-
Chernobyl cancer are probably associated with a 
more advanced tumor stage [54]. The detection 
rate of TC in children and adolescents before the 
Chernobyl disaster was lower in the former SU 
than in other industrialized parts of the world 
[13, 23, 24]. The screening in the contaminated 
territories was productive because many old 
neglected cases were found. This fact is often 
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disregarded in the literature. For example, Fridman 
et al., wrote that the frequency of sporadic TC in 
the former SU in the period 1971-85 did not differ 
from global statistics [55] referring to the study 
of Williams [18], where no such statements were 
found. Balonov wrote about the background of TC 
incidence in children ≤10 years old of 2-4 cases/
million/year [56]. However, in Belorussia only 3 
pediatric (≤15 years old) with TC were diagnosed 
during 1981-85 (incidence rate ~0.3 cases/million/
year). For the whole of Ukraine, the statistics were 
correspondingly 25 and 0.5 and for its northern 
regions - 1.0 and 0.1 [24]. The above-cited figures 
are low in comparison with other developed 
countries [13, 23], which means that there was a 
reservoir of neglected cancers. It is known that the 
screening can enhance a registered TC incidence 
10-fold or more [5, 57] due to a “reservoir of 
clinically silent cancers” [58]. Finally, with regard 
to the cleanup workers (liquidators), it should be 
considered that many of them underwent regular 
medical checkups [59, 60] i.e. the surveillance bias 
has taken place [14, 15].

CONCLUSION
There is evidence that RET rearrangements in 
PTC, especially RET/PTC3, tend to correlate with 
the tumor progression. In the future, relationships 
between different types of RET/PTC, tumor 
dimensions, stage, and grade should be tested 
quantitatively. Further data collection on the 
frequency of different RET/PTC fusion types 
in less developed countries may provide more 
evidence in support of the association between 
RET/PTC3 and the tumor progression i.e. 
averagely later tumor detection. If the hypothesis 
presented here is correct, a low prevalence of RET/
PTC3 among sporadic TC cases could be seen as a 
statistical indicator of efficient TC diagnosis and 
early detection in a given population.
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