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Abstract
Cancer is the one of most prevalent and leading causes of death in the world. Current ad-
vancements in technology improve the understanding of the pathogenesis and pathology of 
cancers. But, due to enlarging mortality rates, poor prognosis, and lacunae in clinical early 
predictive biomarkers provide an important momentum to investigate novel early diagnos-
tic/prognostic markers and specific targets for cancers therapeutics sufficiently sensitive to 
cancers. Recently, the emerging small noncoding microRNAs (miRNAs) are suggested as 
important and critical regulators in the oncogenesis pathways and serve as precise and useful 
early clinical biomarkers. This new class of biomarkers is emerging as a novel molecule for 
cancer diagnosis and prognosis and recent miRNA expression studies in tumors yield prom-
ising results. However, establishing miRNA expression in the blood circulation, cell-free as 
noninvasive marker, has advantages over determination of tumor in primary tissue. A better 
understanding of the involvement of this class of molecular markers in carcinogenesis could 
provide new insights into the mechanisms in the development of tumor and could be helpful 
to identify new specific novel early powerful markers for the early detection of cancer. The 
current review study aimed at summarizing the recent research studies supporting the utility 
of miRNAs as novel early diagnostic and prognostic tools, thus potentially illuminating fu-
ture treatment strategies for cancers, which indicates the feasibility and clinical applications 
and the importance of miRNAs in cancer for researchers and clinical diagnostic centers.
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Till date, cancer remains an alarming clinical 
challenge due to its poor prognosis, restricted options 
of treatment, chemotherapy/radiotherapy resistance, 
and late diagnosis of the disease. Therefore, there 
is a need to develop early markers to detect cancer 
at the stage where it can be treated properly [1-8]. 
The implementation of assays enabling to detect 
circulating tumor cells (CTCs) sparked an additional 
and important boost of interest in blood-derived 
noninvasive biomarkers for patients with cancer. 
Various assays for CTC enumeration are described as 
the Cell Search™ Epithelial Cell test. Recently, the 
FDA-approval was acquired to use it as a prognostic 

marker when measured in patients with metastatic 
breast [9, 10], colorectal [11], and prostate cancers 
[12]. Probably even more interesting than mere 
counting, CTCs in future can be isolated from the 
blood of patients with cancer for further analysis and 
improvement in cancer diagnosis [13].
CTCs isolation and their subsequent characterization 
can provide the opportunity to bypass the problems 
associated with obtaining metastatic tissue, and serve 
as a ‘liquid biopsy’. CTCs is already characterized 
for the presence of gene amplification [14-16] and 
genetic aberrations [17, 18], for the expression of 
proteins [19] and several mRNAs [20-22]; and 
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recently, also for the expression of certain miRNAs. 
In recent years, miRNAs are known as key regulators 
of gene expression. It is not surprising that the miRNA 
expression in primary tumor tissue associates with the 
outcome in several recent research studies. However, 
it is required to determine miRNA expression in the 
peripheral circulation, either CTC-associated or as 
cell-free circulating molecules, since ithas several 
advantages over determination in primary tumor 
tissue; thereby augments the important applications 
of miRNA profile determination in oncology.

Synthesis of miRNAs
The miRNAs are small 20-22 nucleotide single-
stranded RNA molecules nonecoding for proteins and 
discovered in 1993 [23]. They are transcribed from 
miRNA genes by RNA polymerase-II and III to form 
primary miRNAs, or pri-miRNAs, cleaved by Drosha 
enzyme to create precursor miRNAs, or pre-miRNAs 
[24, 25]. This hair pin structure pre-miRNA is cleaved 
once transported into the cytoplasm to create a 
miRNA duplex by a protein called Dicer to give final 
mature miRNA, which dictates cellular events [26, 
27]. The lesser stable strand of the miRNA duplex is 
typically added to another miRNA induced silencing 
protein complex; this formation is induced by Dicer 
and affects the target gene in terms of its protein 
expression. These effects are most often observed 
when one of the strands of the miRNA binds to the 
3’-untranslated region (UTR) of the mRNA specific 
target sequence [28, 29].

miRNAs and Tumorigenesis
Short-interfering RNAs (siRNAs) (double-stranded) 
match perfectly with their mRNA target sequences, 
while miRN (single-stranded) are an imperfect match 
to their target sequences causing the bulge in the 
resulting structure [30]; this information implies that 
miRNAs inhibit translation whereas siRNAs only 
destabilize the molecule through cleavage. When gene 
expression profiles are used to compare cancerous 
and normal tissue, it is observed that miRNAs and 
also mRNAs are deregulated [31]; this information 
can be used to suppose that tumor genesismay occur 
due to the change within the collection of miRNAs 
in the genome (miRNome). In addition It is observed 
that certain miRNAs are deregulated more often 
than others, which suggests that they are playing a 
Major  important role in tumorigenesis [32]. In the 
beginnings, it was believed that miRNAs had similar 
effects on gene expression (ie, negative regulation of 

target mRNA), but recent studies show that miRNAs 
can either repress or activates, depending on the 
conditions of the cell as it is believed that microRNAs 
do not function by themselves, but in what are called 
effector complexes miRNPs (rib nucleoproteins). The 
miRNPs are able to gather enzymes and factors that 
can cleave mRNA.
And degrade the enzymes that further process mRNA. 
On the other hand, miRNAs can positively regulate 
gene expression. This up regulation is specific to the 
target RNA sequence and associated with the factors 
gathered by the miRNP [33-35]. The identification 
of new molecular miRNAs biomarkers yielded 
an exciting new array of easy accessible features, 
which may be employed in diagnosis, prognosis, and 
treatment of cancer. 

miRNAs as Genetic Indicators of Cancer
In the past, oncogenes and tumor-suppressor genes 
were thought of as the main genetic indicators of 
cancer, but according to the recent advanced research 
studies it is depicted that miRNAs are the main 
genetic indicators of cancer; the miRNAs involved 
in carcinogenesis are called oncomirs [36, 37]. It 
is reported that 50% of genes encoded by miRNAs 
are placed at certain sites called fragile sites where 
chromosomal rearrangements associated with cancer 
often occur [38]. In recent research studies it was 
found that in most cancers, miRNAs are apparently 
deregulated that may be caused by transcriptional 
deregulation, epigenetic alterations (DNA 
methylation, mutation, and DNA copy abnormalities), 
as well as problems in miRNA biogenesis pathways, 
these mechanisms can either work alone or together 
with each other in order to deregulate miRNAs [39]. 
Certain families of these miRNAs regulate cell-cycle 
and cell-cycle exit (senescence), in addition to cell 
differentiation and proliferation; and if mutated, 
can cause abnormalities in the cells. The mutation 
in any given miRNA of a somatic cell can lead to 
tumorigenesis and if present in germ line cells, it may 
be a precursor to cancer [39-42].
The miRNAs are a group of non-protein coding 
RNA molecules, which exert their function by 
base pairing between the seed region of miRNA 
and 3′ un-translated regions (3′-UTR) of the target 
gene. Dysregulated miRNAs play either a tumor-
suppressive or anoncogenic role in regulating cell 
growth, cell cycles, and cell migration, depending 
on their target genes in gastric cancer as in Figure 1 
[43]. This group of miRNAs can be released from the 
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Figure 1: The miRNAs Can Act as Tumor Suppressors and Oncogenes.
Down regulation or loss of miRNAs with tumor suppressor function may increase translation of oncogenes and hence formation of 
excess oncogenic proteins, leading to tumor formation. On the other side, the up regulation of oncogenic miRNA scan block tumor 
suppressor genes and can lead to the tumor formation.
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cancer cells to body fluids via secreting exosomes 
particles by which they are protected from RNase 
degradation in circulation.

The miRNA Function 
It is predicted that these miRNAs regulate up to 
30% of all protein coding genes [44]. They regulate 
post-transcriptional gene expression in a sequence-
specific manner by recognizing the mRNA target 
with the 5’-end of the mature miRNA strand referred 
to as the ‘seed-sequence for targeting [23]. After the 
target mRNAs recognition, the regulation of gene 
expression may occur via two different mechanisms 
on the basis of complementarity of the miRNA 
sequence with its target mRNA. When perfect base-
paring homology exists between the miRNA and the 
mRNA due to which, the RNA-mediated interference 
pathway is induced, due to which cleavage of the 
mRNA occurs by Argonaute as already present in 
the RNA induced-silencing complex (RISC). When 
imperfect binding occurs to partially complementary 
sequences in the 3’-untranslated region of target 
mRNAs, at same time the target mRNA is regulated 
by repression of protein translation, which is more 
frequent than perfect binding. As a result, proteins 
are regulated by miRNAs without considerably 
disturbing the corresponding mRNA expression 
levels. Such a scientific knowledge underscores the 

need to combine the mRNA and miRNA scientific 
data to generate or improve new precise and perfect 
predictive and prognostic models.

Potential Applications of miRNA Sand Its Role in 
Primary Cancer
In carcinogenesis, it is thought that miRN as play 
two different roles by functioning as ‘oncomirs’ and 
tumor suppressors. These facts are supported by the 
observation that miRNA expression in tumors can be 
up- or down-regulated when there is a comparison 
between cancerous and normal tissue [45]. As a result 
of the vital role of miRNAs in the tumor biology, there 
is a broad range of potential applications of miRNA 
measurement in oncology that can act as a diagnostic 
tool, and serve as prognostic and predictive factors. 
In other medical fields, it can play a measuring role; 
similar to miRNA signatures that can be potential 
drug targets and pharmacodynamics markers. All of 
these applications may be possible in primary tumors/
metastases, but the stability of miRNAs also enables 
their detection in the circulation. Therefore, in the 
field of cancer biology, circulating miRNAs can 
serve as biomarkers measured repeatedly and non-
invasively in a wide array of cancer types [46, 47].

The miRNA Expression Profiles to Classify 
Cancers 
The miRNA expression profiling is surprisingly 
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Figure 2: The miRNAs as Potential Diagnostic Biomarkers.
Various aspects of miRNAs provide novel ways of utilizing the min disease diagnosis. Blood-based miRNA profiling as a diagnostic 
test provides a non-invasive and fast alternative to traditional methods.
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informative as it reflects the developmental lineage 
and differentiation state of the tumors. They show a 
general down regulation or up regulation of miRNAs 
in tumors compared with normal tissue, and are also 
able to successfully classify poorly differentiated 
tumors. On the other hand, messenger RNA profiles 
are highly inaccurate in classifying tumors when 
applied to the same samples [35, 45, 46]. Breast 
cancer is a notoriously heterogeneous disease while 
miRNAs can facilitate to classify the subtype origin 
of tumor cells, as in situ hybridization technique to 
disclose the spatial distribution of miRNA expression 
in archived formalin-fixed, paraffin-embedded breast 
tumors [46, 48, 49].

The Role of miRNAs as Diagnostic and Prognostic 
Biomarker in Cancer
There are various aspects of miRNAs that provide 
novel ways of utilizing miRNAs in disease diagnosis 
and prognosis, as shown in Figure 2.
The miRNAs and Gastric Cancer
Due to the poor prognosis, treatment limited options, 

resistance to chemotherapy/ radiotherapy, and its 
late diagnosis detection markers GC is currently 
an alarming and major clinical challenge. Thus, 
a longstanding goal of GC research is to discover 
new methods for the early diagnosis, prognosis, and 
management of cancer. There are some miRNAs that 
show positive links with the gastric cancer and can 
act as early diagnostic and prognostic biomarkers for 
gastric cancer in future:
• The miR-372 with the oncogenic role in controlling 

cell growth, cell cycle, and apoptosis via down-
regulation of LATS2 tumor suppressor gene [48];

• GC proliferation and growth of cancer cells show 
positive relationship with the over expression 
of miR-650 at least partially through directly 
targeting ING4gene [50];

• The down regulation of mir-663 in tumor cells 
may lead to the development of GC, in association 
with the hyperplasia of aberrant cells [51];

• Overexpression of miR-126 in association with 
the down regulation of SOX2 might contribute to 
gastric carcinogenesis [52];
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• NF-kappaB1 may be targeted by miR-9, miR-16, 
and miR-21 and regulate the growth of GC cells, 
which suggests an impressive tumor suppressive 
activity in gastric pathogenesis [53];

• There is a lot of evidence that CCKBR was targeted 
by miR-148b and significantly suppressedthe 
growth of GC cells [54];

• The inhibitory effect on cell proliferation of 
miR-451 and miR-141 could be involved in the 
development of GC [55-57];

• Family of miR-29 and ectopic expression 
profiling of miR-101 could obviously inhibit the 
cell proliferation, migration, and invasion of GC 
cells by targeting the Cdc42 and EZH2, Cox-2, 
and Mcl-1 Fos genes, respectively [58, 59];

• In different previous studies it was observed that 
miR10b, miR-223, miR-21, miR-338, miR-30a-
5p, and miR 126 were closely and significantly 
associated with relapse-free and overall survival 
in patients with GC [60-63].

Over the past years, the scientists investigated the 
viability of utilizing miRNAs as biomarkers, since 
many of them were involved in GC tumorigenesis, 
proliferation, invasion, and metastasis [64-66]. 
Several circulating miRNAs are detected in serum, 
plasma, urine, tears, amniotic fluid, and gastric juice 
and their different expression patterns in these body 
fluids might originate from different cell types under 
certain physiological status. Therefore, miRNA 
might be a useful noninvasive biomarker to diagnose 
recurrent GC.
In addition, genome-wide [66-69] studies showed that 
miRNA genes were frequently located within regions 
of the loss of heterozygosity, amplification, fragile 
sites, and other cancer-associated genomic regions, 
suggesting the vital role of miRNAs in tumor genesis 
[70]. Further investigations showed that up regulated 
and downregulated miRNAs expression profiling 
could be important in tumorigenesis as new broad-
spectrum oncogenes and tumor suppressor genes in 
GC, respectively [71].

The miRNAs and Ovarian Cancer 
In ovarian cancer, miR-214 is identified as a miRNA 
involved in resistance to cisplatin, through targeting 
PTEN [72, 73]. In a recent scientific study, four of 
the most differentially expressed miRNAs among a 
total of 515 miRNAs were tested in 10 ovarian tumor 
samples and further validated within 10 normal 
cell line pools. One of the most frequent miRNAs 
was miR-214 up regulated in 30 primary ovarian 

tumor samples and its role in cisplatin resistance 
was elucidated by the knocking down of miR-214 
causing the increased PTEN protein expression and 
decreased Protein Kinase B (PKB) also known as 
AKT phosphorylation (AKT is its activated form).
Recent scientific studies revealed that dysregulation 
of miRNAs was involved in a variety of human 
diseases as well as ovarian cancer [72, 74, 75]. The 
recent scientific Cancer Genome Atlas (TCGA) 
project suggested that ovarian cancers could 
be separated into three miRNA subtypes while 
analyzing mRNA expression, miRNA expression, 
promoter methylation, and DNA copy number in a 
total of 489 HGSOCs [76]. In a recent scientific study 
it was observed that17miRNAs were dysregulated 
in HGSOCs in comparison with normal ovary 
samples. Among them eight miRNAs (miR-183-
3P, miR-15b-3p, miR-15b, miR-590-5p, miR-18a, 
miR-16, miR-96, and miR-18b) were upregulated 
and nine downregulated (miR-140-3p, miR-145-3p, 
miR-143-5p, miR-34b-5p, miR-145, miR-139-5p, 
miR-34c-3p, miR-133a, and miR-34c-5p) [77-81]. 
Emerging evidence regarding miRNAs revealed 
that microRNAs can play a role in ovarian cancer 
as oncogenes or tumor suppressor genes. The recent 
miRNAs studies on ovarian cancer showed that miR-
199a-3p was downregulated in serous ovarian high-
grade carcinomas and the loss of miR-199a-3p was 
involved in ovarian carcinogenesis and there was 
peritoneal dissemination by causing the up regulation 
of receptor c-Met against the hepatocyte growth 
factor [82, 83].

The miRNAs and Non-Small Cell Lung Cancer 
The validation in the patient samples were performed 
in a study on the predictive value of miR-128b 
expression on response to gefitinib, an EGFR inhibitor, 
in non-small cell lung cancer (NSCLC) [72, 84]. In 
recent multivariate miRNAs analysis it was found that 
only histology, line of treatment, and loss of miR-128b 
were predictive of response, but there was no such 
response regarding the EGFR expression or mutation 
[72, 84]. It is well known that the onset of cancer 
impacts the immune system leading to changes in the 
gene expression of blood cells [85]. It was observed 
that in some recent research reports that the expression 
of let-7a was low in lung cancerous tissue, and it was 
also observed in the blood of patients with lung cancer 
compared with healthy individuals [85, 86]. As already 
mentioned in many of the research studies, miRNAs 
are also present in other body fluids and also stably 
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present in sputum, which can differentiate the patients 
with lung adenocarcinoma from healthy individuals 
by the help of four sputum miRNAs panel of namely 
miR-486, miR-21, miR-200b, and miR-375, with high 
sensitivity (80.6%) and specificity [87].

The miRNAs and Hepatocellular Carcinoma
In three independent cohort studies, a total of 455 
patients with HCC were taken and it was identified 
that miR-26 had lower expression in the tumors than 
in paired noncancerous tissue [72, 88]. Additionally, 
of the patients that were not treated by the interferon, 
the control arm of the cohorts, the ones with lower 
expression of miR-26 in their tumor had shorter 
overall survival. The patients in the treatment arm 
of the cohorts that did not receive interferon, the 
ones with lower miR-26 expression, improved their 
survival compared with patients with higher miR-
26 expression. In another multivariate analysis, 
a significant relationship was observed between 
miR-26 expression and the response towards the 
interferon therapy [88]. Murakami et al., for the 
first time reported that the hepatic malignancy 
exhibited an abnormal miRNAs expression pattern 
as dysregulation of its expression was identified as a 
common characteristic of liver cancer and after that 
a number of studies confirmed that the miRNAs had 
important regulatory roles in hepatocarcinogenesis 
and malignant transformation [89, 90].
The miRNAs and Breast Cancer 
Different studies on breast cancer cell lines showed 
that five candidate predictive miRNAs from 249 
miRNAs in a small discovery set of breast cancer 
specimens were analyzed by the expression profile 
in an independent series of 246 ER-positive primary 
breast tumors [91, 92]. Inmultivariate analysis, 
higher expression of miR-30c was associated with 
benefit from first line tamoxifen monotherapy and 
longer progression-free survival [93, 94]. Mostert et 
al., stated that cancer-initiating cells or CSCs were 
responsible for tumor development and progression. 
These cells share a number of different biological 
properties with the normal somatic stem cells 
including the capacity for asymmetric cell division 
and the ability to efflux the small compounds [72, 
93]; however, the CSCs vary from normal stem cells 
in their tumor seeding and abilities of metastasis. 
In addition, the phenotypic plasticity of the CSCs, 
which is their capacity to distinguish into non-CSCs, 
is thought to be an important factor to prevent tumor 
malignancy [95]. Therefore, CSC theory for cancer 

progress is usually accepted in the fields of basic and 
translational cancer research. The first CSCs in solid 
tumors were recognized and isolated from breast 
cancers. Al-Hajj et al., reported in their study that 
the CD44+/CD24−/low lineage-cells from human 
breast samples showed a remarkably high tumor-
seeding capacity, and in 2007 it was Yu et al., reported 
that the let-7 was the main regulator of the CSC 
properties, as self-renewal action and tumor-seeding 
ability [96, 97]. By the application of mammosphere 
culture conditions and treatment with the anti-cancer 
reagents, Yu et al., confirmed that the CSCs showed 
a CD44+/CD24−/low antigen phenotype and had 
significant down-regulation of let-7 expression; 
furthermore, they also demonstrated that let-7 
inhibited self-renewal and de-differentiation of the 
breast cancer cells through direct targeting of the 
genes encoding the RAS and high mobility group AT-
hook 2 (HMGA2), respectively. Mani et al., reported 
that CD44+/CD24−/low cell populations from the 
cancerous breast tissue specimens showed the features 
of epithelial to mesenchymal transition (EMT) and 
high tumorigenicity [98]. Since EMT is always 
observed during the tumor invasion and metastasis, 
the genetic controls and molecular mechanisms 
underlying the acquisition of invasiveness and the 
subsequent systemic spread of the metastatic cells are 
the areas of intensive research. The EMT phenotype is 
characterized by the loss of the epithelial markers such 
as E-cadherin, the up-regulation of the mesenchymal 
markers such as N-cadherin and vimentin, the loss of 
cell-cell adhesion and cell polarity, and the acquisition 
of cell invasive capabilities. A molecular link between 
the EMT and miRNAs was reported by Gregory et 
al., they found that miR-205 and other five members 
of the family among miR-200, namely, miR-200c, 
miR-200a, miR-200b, miR-429, and miR-141 are 
downregulated in the Madin Darby canine kidney 
cells undergoing EMT [99]. The family of miR-200 is 
classified into two clusters, namely miR-200b, miR-
200a, and miR-429 on human chromosome 1, and 
miR-141 and miR-200c on human chromosome 12 
[100].The expression among miR-200 family, which 
inhibits the EMT phenotype, induced by transforming 
growth factor-β by direct targeting the genes encoding 
the E-cadherin transcriptional repressors of zinc 
finger E-box-binding home box 1 (ZEB1),ZEB2,and 
on the other hand the ZEB1 suppress the transcription 
of miR-200c and miR-141; since both of the mare 
strong inducers of epithelial differentiation, therefore 
EMT phenotype is closely regulated by a reciprocal 
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interaction among the ZEB1 and miR-200 family [99, 
100]. Martello et al., demonstrated that miR-103/107 
attenuated miRNA biosynthesis via targeting the gene 
encoding the Dicer and leading to the global down 
regulation of miRNAs, including miR-200 family, 
and the succeeding progress of EMT and a metastatic 
phenotype of the epithelial cancerous cells [101, 102]. 
Song et al., provided the first confirmation that the 
chromatin-remodeling systems with opposing effects 
on cell fate (self-renewal versus differentiation) 
and EMT induction were regulated by balance of 
opposing sets of the miRNAs.

Evidence of Promise in the Future of Cancer 
Prevention
However, with a lot of the recent information 
on miRNAs, the future of cancer prevention and 
prognoses seems promising. There is still much 
of the work to be done in this field, but progress is 
being made daily to understand how miRNAs work 
and how this can be applied to prevent cancer. The 
miRNAs are budding new markers that can serve as 
diagnostic and prognostic markers and they are also 
considered as biomarkers to predict the response to 
therapy and other treatments in several malignancies. 
Due to the miRNA expression specificity towards 
the tissue and disease stage; they can identify the 
presence or absence of tumors and also determine 
the affected primary organ or tissue. In addition, they 
can also identify the clinical and pathological stage 
of the disease. Furthermore the miRNAs can expect 
risk of progression, relapse, and metastasis, and help 
to evaluate possible clinical scenarios in relation to 
the therapy response. The clinical strength of these 
candidate miRNAs signatures should be determined 
by large independent cohorts in multi-centric studies. 
In addition, by other robust platforms, additional 
appropriate bio-computational and advanced 
statistical analysis should be used to recognize 
candidate miRNA signatures. Past and current 
literature suggest that to diagnose cancer early, the 
focus should be on the type of circulating miRNAs 
in body fluids; therefore, there will be a panel of 
miRNAs in future that can act as early diagnostic 
marker for cancer detection at curable stage.

CONCLUSIONS
Micro-RNAs which are specific to cancer may act as 
ultimate noninvasive early diagnostic and prognostic 
biomarkers for cancer, due to their involvement in 
the progression of cancer. However cancer molecular 

biology has been well characterized, but works on 
miRNAs in cancer is still in its evolving stage. So 
there is need of quantification and normalization 
strategies and should be standardized before any 
noval miRNAs can act as a noninvasive marker for 
early diagnosis of cancer.
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