Volume 7, Issue 4 (Multidisciplinary Cancer Investigation 2023)                   Multidiscip Cancer Investig 2023, 7(4): 25-39 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghajani-Hashjin M, Naghib S M. Nanoscale MOF-Based Composites for Cancer Treatment. Multidiscip Cancer Investig 2023; 7 (4) :25-39
URL: http://mcijournal.com/article-1-378-en.html
1- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
2- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran , naghib@iust.ac.ir
Abstract:   (254 Views)
Recently, the use of porous nanomaterials with large mesopores, tunable porosity, and high surface area has drawn particular interest in the treatment and imaging of cancer. Adding additional pores to nanostructures alters therapeutic agent loading capacity and controlled release. It enhances optoelectronic and optical features suitable for tumor treatment. For many years, the leading cause of disease-related death has been cancer, which seriously threatens human health. Nanoscale-metal-organic frameworks are thought to have potential applications in the treatment and biomedical imaging of various tumors due to the rapid advancement of nanomedicine. Since their high surface area and porosity, ability to be customized in size, numerous physicochemical properties, ease of surface functionalization, and simplicity in synthesis, metal-organic frameworks (MOFs), an emerging porous organic-inorganic hybrid material, have gained popularity in recent years. These characteristics make them ideal carriers for cancer theragnostic applications. Although significant research has been done for the potential use of nanoscale MOFs (NMOFs) in cancer diagnostic and therapeutics, more information regarding the stability, in-vivo clearance, toxicology, and pharmacokinetics is still needed to enhance the use of NMOFs in cancer diagnostic and therapeutic. Different techniques using NMOFs are systematically summarized, including chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamical therapy (CDT), radiotherapy (RT), and the combined therapy methods. Finally, a brief conclusion and outlook for biomedical applications of this special field is provided.
Full-Text [PDF 909 kb]   (214 Downloads)    
Select article type: Review Article |
Received: 2023/05/16 | Accepted: 2023/09/12 | ePublished: 2023/10/17

References
1. Cai Y, Wei Z, Song C, Tang C, Han W, Dong X. Optical nano-agents in the second near-infrared window for bio¬medical applications. Chem Soc Rev. 2019;48(1):22-37. DOI: 10.1039/c8cs00494c PMID: 30444505. [DOI:10.1039/C8CS00494C] [PMID]
2. Chowdhury MA. Metal-Organic-Frameworks as Contrast Agents in Magnetic Resonance Imaging. ChemBioEng Re¬views. 2017;4(4):225-39. DOI: 10.1002/cben.201600027. [DOI:10.1002/cben.201600027]
3. Sun SK, Wang HF, Yan XP. Engineering Persistent Lumi¬nescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Acc Chem Res. 2018;51(5):1131-43. DOI: 10.1021/acs.accounts.7b00619 PMID: 29664602. [DOI:10.1021/acs.accounts.7b00619] [PMID]
4. Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, et al. Chemistry for Positron Emission Tomography: Recent Advances in (11) C-, (18) F-, (13) N-, and (15) O-Labeling Reactions. Angew Chem Int Ed Engl. 2019;58(9):2580- 605. DOI: 10.1002/anie.201805501 PMID: 30054961. [DOI:10.1002/anie.201805501] [PMID] []
5. Zhao T, Desjardins AE, Ourselin S, Vercauteren T, Xia W. Minimally invasive photoacoustic imaging: Current status and future perspectives. Photoacoustics. 2019;16:100146. DOI: 10.1016/j.pacs.2019.100146 PMID: 31871889. [DOI:10.1016/j.pacs.2019.100146] [PMID] []
6. Kumar V, Kukkar D, Hashemi B, Kim K-H, Deep A. Advanced Functional Structure-Based Sensing and Im¬aging Strategies for Cancer Detection: Possibilities, Op¬portunities, Challenges, and Prospects. Adv Funct Mater. 2019;29(16):1807859. DOI: 10.1002/adfm.201807859. [DOI:10.1002/adfm.201807859]
7. Gerwing M, Herrmann K, Helfen A, Schliemann C, Berdel WE, Eisenblatter M, et al. The beginning of the end for conventional RECIST - novel therapies require novel im¬aging approaches. Nat Rev Clin Oncol. 2019;16(7):442-58. DOI: 10.1038/s41571-019-0169-5 PMID: 30718844. [DOI:10.1038/s41571-019-0169-5] [PMID]
8. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714-26. DOI: 10.1038/nrc3599 PMID: 24060863. [DOI:10.1038/nrc3599] [PMID]
9. Lim WQ, Yang G, Phua SZF, Chen H, Zhao Y. Self-As¬sembled Oxaliplatin(IV) Prodrug-Porphyrin Conjugate for Combinational Photodynamic Therapy and Chemotherapy. ACS Appl Mater Interfaces. 2019;11(18):16391-401. DOI: 10.1021/acsami.9b04557 PMID: 31002492. [DOI:10.1021/acsami.9b04557] [PMID]
10. Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Supra¬molecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics. 2020;10(2):615-29. DOI: 10.7150/thno.40066 PMID: 31903141. [DOI:10.7150/thno.40066] [PMID] []
11. Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging Nanotechnology and Advanced Materials for Cancer Ra¬diation Therapy. Adv Mater. 2017;29(32). DOI: 10.1002/ adma.201700996 PMID: 28643452. [DOI:10.1002/adma.201700996] [PMID]
12. Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater. 2019;4(6):398-414. DOI: 10.1038/s41578-019- 0108-1. [DOI:10.1038/s41578-019-0108-1]
13. Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev. 2017;117(22):13566-638. DOI: 10.1021/acs.chem¬rev.7b00258 PMID: 29048884. [DOI:10.1021/acs.chemrev.7b00258] [PMID]
14. Lismont M, Dreesen L, Wuttke S. Metal-Organ¬ic Framework Nanoparticles in Photodynamic Thera¬py: Current Status and Perspectives. Adv Funct Mater. 2017;27(14):1606314. DOI: 10.1002/adfm.201606314. [DOI:10.1002/adfm.201606314]
15. Cheng L, Wang X, Gong F, Liu T, Liu Z. 2D Nanoma¬terials for Cancer Theranostic Applications. Adv Mater. 2020;32(13):e1902333. DOI: 10.1002/adma.201902333 PMID: 31353752. [DOI:10.1002/adma.201902333] [PMID]
16. Liu JN, Bu W, Shi J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tu¬mor Hypoxia. Chem Rev. 2017;117(9):6160-224. DOI: 10.1021/acs.chemrev.6b00525 PMID: 28426202. [DOI:10.1021/acs.chemrev.6b00525] [PMID]
17. Song N, Lou XY, Ma L, Gao H, Yang YW. Supramolec¬ular nanotheranostics based on pillarenes. Theranostics. 2019;9(11):3075-93. DOI: 10.7150/thno.31858 PMID: 31244942. [DOI:10.7150/thno.31858] [PMID] []
18. Sun W, Li S, Tang G, Luo Y, Ma S, Sun S, et al. Recent Progress of Nanoscale Metal-Organic Frameworks in Can¬cer Theranostics and the Challenges of Their Clinical Ap¬plication. Int J Nanomedicine. 2019;14:10195-207. DOI: 10.2147/IJN.S230524 PMID: 32099352. [DOI:10.2147/IJN.S230524] [PMID] []
19. Kang T, Li F, Baik S, Shao W, Ling D, Hyeon T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials. 2017;136:98- 114. DOI: 10.1016/j.biomaterials.2017.05.013 PMID: 28525855. [DOI:10.1016/j.biomaterials.2017.05.013] [PMID]
20. Cohen SM. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev. 2012;112(2):970- 1000. DOI: 10.1021/cr200179u PMID: 21916418. [DOI:10.1021/cr200179u] [PMID]
21. Vankayala R, Hwang KC. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Adv Mater. 2018;30(23):e1706320. DOI: 10.1002/adma.201706320 PMID: 29577458. [DOI:10.1002/adma.201706320] [PMID]
22. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. En¬gineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320-64. DOI: 10.1002/anie.201403036 PMID: 25294565. [DOI:10.1002/anie.201403036] [PMID]
23. Yang J, Yang YW. Metal-Organic Frameworks for Bio¬medical Applications. Small. 2020;16(10):e1906846. DOI: 10.1002/smll.201906846 PMID: 32026590. [DOI:10.1002/smll.201906846] [PMID]
24. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444. DOI: 10.1126/sci¬ence.1230444 PMID: 23990564. [DOI:10.1126/science.1230444] [PMID]
25. Zhou HC, Long JR, Yaghi OM. Introduction to metal-or¬ganic frameworks. Chem Rev. 2012;112(2):673-4. DOI: 10.1021/cr300014x PMID: 22280456. [DOI:10.1021/cr300014x] [PMID]
26. McKinlay AC, Morris RE, Horcajada P, Ferey G, Gref R, Couvreur P, et al. BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed Engl. 2010;49(36):6260-6. DOI: 10.1002/anie.201000048 PMID: 20652915. [DOI:10.1002/anie.201000048] [PMID]
27. Wang S, McGuirk CM, d'Aquino A, Mason JA, Mirkin CA. Metal-Organic Framework Nanoparticles. Adv Mater. 2018;30(37):e1800202. DOI: 10.1002/adma.201800202 PMID: 29862586. [DOI:10.1002/adma.201800202] [PMID]
28. Carrillo-Carrion C. Nanoscale metal-organic frameworks as key players in the context of drug delivery: evolu¬tion toward theranostic platforms. Anal Bioanal Chem. 2020;412(1):37-54. DOI: 10.1007/s00216-019-02217-y PMID: 31734711. [DOI:10.1007/s00216-019-02217-y] [PMID]
29. Sun CY, Qin C, Wang XL, Su ZM. Metal-organ¬ic frameworks as potential drug delivery systems. Expert Opin Drug Deliv. 2013;10(1):89-101. DOI: 10.1517/17425247.2013.741583 PMID: 23140545. [DOI:10.1517/17425247.2013.741583] [PMID]
30. Begum S, Hassan Z, Brase S, Woll C, Tsotsalas M. Met¬al-Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications. Acc Chem Res. 2019;52(6):1598-610. DOI: 10.1021/acs. accounts.9b00039 PMID: 30977634. [DOI:10.1021/acs.accounts.9b00039] [PMID]
31. Cai W, Wang J, Chu C, Chen W, Wu C, Liu G. Metal-Or¬ganic Framework-Based Stimuli-Responsive Systems for Drug Delivery. Adv Sci (Weinh). 2019;6(1):1801526. DOI: 10.1002/advs.201801526 PMID: 30643728. [DOI:10.1002/advs.201801526] [PMID] []
32. Beg S, Rahman M, Jain A, Saini S, Midoux P, Pichon C, et al. Nanoporous metal organic frameworks as hybrid poly¬mer-metal composites for drug delivery and biomedical ap¬plications. Drug Discov Today. 2017;22(4):625-37. DOI: 10.1016/j.drudis.2016.10.001 PMID: 27742533. [DOI:10.1016/j.drudis.2016.10.001] [PMID]
33. Wu MX, Yang YW. Metal-Organic Framework (MOF)- Based Drug/Cargo Delivery and Cancer Therapy. Adv Ma¬ter. 2017;29(23). DOI: 10.1002/adma.201606134 PMID: 28370555. [DOI:10.1002/adma.201606134] [PMID]
34. Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, et al. Met¬al-organic frameworks for stimuli-responsive drug deliv¬ery. Biomaterials. 2020;230:119619. DOI: 10.1016/j.bio¬materials.2019.119619 PMID: 31757529. [DOI:10.1016/j.biomaterials.2019.119619] [PMID]
35. Kirchon A, Feng L, Drake HF, Joseph EA, Zhou HC. From fundamentals to applications: a toolbox for ro¬bust and multifunctional MOF materials. Chem Soc Rev. 2018;47(23):8611-38. DOI: 10.1039/c8cs00688a PMID: 30234863. [DOI:10.1039/C8CS00688A] [PMID]
36. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, et al. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv Mater. 2018;30(37):e1704303. DOI: 10.1002/adma.201704303 PMID: 29430732. [DOI:10.1002/adma.201704303] [PMID]
37. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Nanoparticles of Metal-Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine. Adv Mater. 2018;30(37):e1707365. DOI: 10.1002/adma.201707365 PMID: 29876985. [DOI:10.1002/adma.201707365] [PMID]
38. Park J, Jiang Q, Feng D, Mao L, Zhou HC. Size-Controlled Synthesis of Porphyrinic Metal-Organic Framework and Functionalization for Targeted Photodynamic Therapy. J Am Chem Soc. 2016;138(10):3518-25. DOI: 10.1021/ jacs.6b00007 PMID: 26894555. [DOI:10.1021/jacs.6b00007] [PMID]
39. Wang XG, Cheng Q, Yu Y, Zhang XZ. Controlled Nucle¬ation and Controlled Growth for Size Predicable Synthe¬sis of Nanoscale Metal-Organic Frameworks (MOFs): A General and Scalable Approach. Angew Chem Int Ed Engl. 2018;57(26):7836-40. DOI: 10.1002/anie.201803766 PMID: 29700914. [DOI:10.1002/anie.201803766] [PMID]
40. Li B, Gui B, Hu G, Yuan D, Wang C. Postsynthet¬ic Modification of an Alkyne-Tagged Zirconium Met¬al-Organic Framework via a "Click" Reaction. Inorg Chem. 2015;54(11):5139-41. DOI: 10.1021/acs.inorgc¬hem.5b00535 PMID: 25955401. [DOI:10.1021/acs.inorgchem.5b00535] [PMID]
41. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112(2):933-69. DOI: 10.1021/cr200304e PMID: 22098087. [DOI:10.1021/cr200304e] [PMID]
42. Giliopoulos D, Zamboulis A, Giannakoudakis D, Bikiaris D, Triantafyllidis K. Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications. Molecules. 2020;25(1). DOI: 10.3390/molecules25010185 PMID: 31906398. [DOI:10.3390/molecules25010185] [PMID] []
43. Zimpel A, Al Danaf N, Steinborn B, Kuhn J, Hohn M, Bau¬er T, et al. Coordinative Binding of Polymers to Metal-Or¬ganic Framework Nanoparticles for Control of Interactions at the Biointerface. ACS Nano. 2019;13(4):3884-95. DOI: 10.1021/acsnano.8b06287 PMID: 30844241. [DOI:10.1021/acsnano.8b06287] [PMID]
44. Gimenez-Marques M, Bellido E, Berthelot T, Simon-Yar¬za T, Hidalgo T, Simon-Vazquez R, et al. GraftFast Sur¬face Engineering to Improve MOF Nanoparticles Fur¬tiveness. Small. 2018;14(40):e1801900. DOI: 10.1002/ smll.201801900 PMID: 30091524. [DOI:10.1002/smll.201801900] [PMID]
45. Zhu YD, Chen SP, Zhao H, Yang Y, Chen XQ, Sun J, et al. PPy@MIL-100 Nanoparticles as a pH- and Near-IR-Ir¬radiation-Responsive Drug Carrier for Simultaneous Pho¬tothermal Therapy and Chemotherapy of Cancer Cells. ACS Appl Mater Interfaces. 2016;8(50):34209-17. DOI: 10.1021/acsami.6b11378 PMID: 27998104. [DOI:10.1021/acsami.6b11378] [PMID]
46. Deng J, Wang K, Wang M, Yu P, Mao L. Mitochondria Tar¬geted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells. J Am Chem Soc. 2017;139(16):5877- 82. DOI: 10.1021/jacs.7b01229 PMID: 28385016. [DOI:10.1021/jacs.7b01229] [PMID]
47. Ning W, Di Z, Yu Y, Zeng P, Di C, Chen D, et al. Imparting Designer Biorecognition Functionality to Metal-Organ¬ic Frameworks by a DNA-Mediated Surface Engineering Strategy. Small. 2018;14(11):e1703812. DOI: 10.1002/ smll.201703812 PMID: 29450964. [DOI:10.1002/smll.201703812] [PMID]
48. Zhuang J, Young AP, Tsung CK. Integration of Biomole¬cules with Metal-Organic Frameworks. Small. 2017;13(32). DOI: 10.1002/smll.201700880 PMID: 28640560. [DOI:10.1002/smll.201700880] [PMID]
49. Song N, Kakuta T, Yamagishi T-a, Yang Y-W, Ogoshi T. Molecular-Scale Porous Materials Based on Pillar[n] arenes. Chem. 2018;4(9):2029-53. DOI: 10.1016/j.chem¬pr.2018.05.015. [DOI:10.1016/j.chempr.2018.05.015]
50. Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strat¬egy in the battle against cancer with a bright future. Chem Soc Rev. 2017;46(22):7021-53. DOI: 10.1039/c6cs00898d PMID: 28980674. [DOI:10.1039/C6CS00898D] [PMID]
51. Ogoshi T, Kakuta T, Yamagishi TA. Applications of Pil¬lar[n]arene-Based Supramolecular Assemblies. Angew Chem Int Ed Engl. 2019;58(8):2197-206. DOI: 10.1002/ anie.201805884 PMID: 29900642. [DOI:10.1002/anie.201805884] [PMID]
52. Feng W, Jin M, Yang K, Pei Y, Pei Z. Supramolecular deliv¬ery systems based on pillararenes. Chem Commun (Camb). 2018;54(97):13626-40. DOI: 10.1039/c8cc08252a PMID: 30444504. [DOI:10.1039/C8CC08252A] [PMID]
53. Lou XY, Li YP, Yang YW. Gated Materials: Installing Mac¬rocyclic Arenes-Based Supramolecular Nanovalves on Po¬rous Nanomaterials for Controlled Cargo Release. Biotech¬nol J. 2019;14(1):e1800354. DOI: 10.1002/biot.201800354 PMID: 30457707. [DOI:10.1002/biot.201800354] [PMID]
54. Li Z, Song N, Yang Y-W. Stimuli-Responsive Drug-Deliv¬ery Systems Based on Supramolecular Nanovalves. Matter. 2019;1(2):345-68. DOI: 10.1016/j.matt.2019.05.019. [DOI:10.1016/j.matt.2019.05.019]
55. Tan LL, Li H, Qiu YC, Chen DX, Wang X, Pan RY, et al. Stimuli-responsive metal-organic frameworks gat¬ed by pillar[5]arene supramolecular switches. Chem Sci. 2015;6(3):1640-4. DOI: 10.1039/c4sc03749a PMID: 30154997. [DOI:10.1039/C4SC03749A] [PMID] []
56. Tan LL, Li H, Zhou Y, Zhang Y, Feng X, Wang B, et al. Zn(2+)-Triggered Drug Release from Biocompatible Zirco¬nium MOFs Equipped with Supramolecular Gates. Small. 2015;11(31):3807-13. DOI: 10.1002/smll.201500155 PMID: 25919865. [DOI:10.1002/smll.201500155] [PMID]
57. Tan LL, Song N, Zhang SX, Li H, Wang B, Yang YW. Ca(2+), pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone dis¬eases. J Mater Chem B. 2016;4(1):135-40. DOI: 10.1039/ c5tb01789k PMID: 32262817. [DOI:10.1039/C5TB01789K] [PMID]
58. Yang J, Dai D, Zhang X, Teng L, Ma L, Yang YW. Mul¬tifunctional metal-organic framework (MOF)-based nano¬platforms for cancer therapy: from single to combination therapy. Theranostics. 2023;13(1):295-323. DOI: 10.7150/ thno.80687 PMID: 36593957. [DOI:10.7150/thno.80687] [PMID] []
59. Yang J, Yang Y-W. Metal-organic framework-based cancer theranostic nanoplatforms. VIEW. 2020;1(2):e20. DOI: 10.1002/viw2.20. [DOI:10.1002/viw2.20]
60. Pham MH, Vuong GT, Vu AT, Do TO. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic frame¬work nanocrystals. Langmuir. 2011;27(24):15261-7. DOI: 10.1021/la203570h PMID: 22053750. [DOI:10.1021/la203570h] [PMID]
61. Wang Y-M, Liu W, Yin X-B. Self-Limiting Growth Na¬noscale Coordination Polymers for Fluorescence and Mag¬netic Resonance Dual-Modality Imaging. Adv Funct Ma¬ter. 2016;26(46):8463-70. DOI: 10.1002/adfm.201602925. [DOI:10.1002/adfm.201602925]
62. Wang Z, Cohen SM. Postsynthetic modification of met¬al-organic frameworks. Chem Soc Rev. 2009;38(5):1315- 29. DOI: 10.1039/b802258p PMID: 19384440. [DOI:10.1039/b802258p] [PMID]
63. Rieter WJ, Taylor KM, An H, Lin W, Lin W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc. 2006;128(28):9024-5. DOI: 10.1021/ja0627444 PMID: 16834362. [DOI:10.1021/ja0627444] [PMID] []
64. Ray Chowdhuri A, Bhattacharya D, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 2016;45(7):2963-73. DOI: 10.1039/ c5dt03736k PMID: 26754449. [DOI:10.1039/C5DT03736K] [PMID]
65. Lin J, Xin P, An L, Xu Y, Tao C, Tian Q, et al. Fe(3) O(4)-ZIF-8 assemblies as pH and glutathione responsive T(2)-T(1) switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo. Chem Commun (Camb). 2019;55(4):478-81. DOI: 10.1039/c8cc08943d PMID: 30547169. [DOI:10.1039/C8CC08943D] [PMID]
66. Ju Y, Zhang H, Yu J, Tong S, Tian N, Wang Z, et al. Monodisperse Au-Fe(2)C Janus Nanoparticles: An At¬tractive Multifunctional Material for Triple-Modal Im¬aging-Guided Tumor Photothermal Therapy. ACS Nano. 2017;11(9):9239-48. DOI: 10.1021/acsnano.7b04461 PMID: 28850218. [DOI:10.1021/acsnano.7b04461] [PMID]
67. deKrafft KE, Xie Z, Cao G, Tran S, Ma L, Zhou OZ, et al. Iodinated nanoscale coordination polymers as poten¬tial contrast agents for computed tomography. Angew Chem Int Ed Engl. 2009;48(52):9901-4. DOI: 10.1002/ anie.200904958 PMID: 19937883. [DOI:10.1002/anie.200904958] [PMID]
68. Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo phar¬macokinetics and X-ray-contrast-imaging studies. Small. 2007;3(2):333-41. DOI: 10.1002/smll.200600427 PMID: 17262759. [DOI:10.1002/smll.200600427] [PMID]
69. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129(24):7661-5. DOI: 10.1021/ja071471p PMID: 17530850. [DOI:10.1021/ja071471p] [PMID]
70. Shang W, Zeng C, Du Y, Hui H, Liang X, Chi C, et al. Core-Shell Gold Nanorod@Metal-Organic Framework Nanoprobes for Multimodality Diagnosis of Glioma. Adv Mater. 2017;29(3). DOI: 10.1002/adma.201604381 PMID: 27859713. [DOI:10.1002/adma.201604381] [PMID]
71. Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseas¬es. Adv Drug Deliv Rev. 2014;76:2-20. DOI: 10.1016/j. addr.2014.07.011 PMID: 25086372. [DOI:10.1016/j.addr.2014.07.011] [PMID] []
72. Chen D, Yang D, Dougherty CA, Lu W, Wu H, He X, et al. In Vivo Targeting and Positron Emission Tomography Imag¬ing of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials. ACS Nano. 2017;11(4):4315- 27. DOI: 10.1021/acsnano.7b01530 PMID: 28345871. [DOI:10.1021/acsnano.7b01530] [PMID] []
73. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK. Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for pH Sensitive Tar¬geted Anticancer Drug Delivery. ACS Appl Mater Interfac¬es. 2016;8(26):16573-83. DOI: 10.1021/acsami.6b03988 PMID: 27305490. [DOI:10.1021/acsami.6b03988] [PMID]
74. Liu W, Wang YM, Li YH, Cai SJ, Yin XB, He XW, et al. Fluorescent Imaging-Guided Chemotherapy-and-Photody¬namic Dual Therapy with Nanoscale Porphyrin Metal-Or¬ganic Framework. Small. 2017;13(17). DOI: 10.1002/ smll.201603459 PMID: 28244202. [DOI:10.1002/smll.201603459] [PMID]
75. Ryu U, Yoo J, Kwon W, Choi KM. Tailoring Nanocrystal¬line Metal-Organic Frameworks as Fluorescent Dye Car¬riers for Bioimaging. Inorg Chem. 2017;56(21):12859-65. DOI: 10.1021/acs.inorgchem.7b01684 PMID: 29028316. [DOI:10.1021/acs.inorgchem.7b01684] [PMID]
76. Zhang R, Qiao C, Jia Q, Wang Y, Huang H, Chang W, et al. Highly Stable and Long-Circulating Metal-Organic Frame¬works Nanoprobes for Sensitive Tumor Detection In Vivo. Adv Healthc Mater. 2019;8(19):e1900761. DOI: 10.1002/ adhm.201900761 PMID: 31368240. [DOI:10.1002/adhm.201900761] [PMID]
77. Skliarenko J, Warde P. Practical and clinical applications of radiation therapy. Medicine. 2016;44(1):15-9. DOI: 10.1016/j.mpmed.2015.10.016. [DOI:10.1016/j.mpmed.2015.10.016]
78. Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, et al. Nanoscale metal-organic frameworks for combined photodynam¬ic & radiation therapy in cancer treatment. Biomaterials. 2016;97:1-9. DOI: 10.1016/j.biomaterials.2016.04.034 PMID: 27155362. [DOI:10.1016/j.biomaterials.2016.04.034] [PMID]
79. Lan G, Ni K, Veroneau SS, Luo T, You E, Lin W. Nanoscale Metal-Organic Framework Hierarchically Combines High-Z Components for Multifarious Radio-Enhancement. J Am Chem Soc. 2019;141(17):6859-63. DOI: 10.1021/ jacs.9b03029 PMID: 30998341. [DOI:10.1021/jacs.9b03029] [PMID]
80. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an up¬date. CA Cancer J Clin. 2011;61(4):250-81. DOI: 10.3322/ caac.20114 PMID: 21617154. [DOI:10.3322/caac.20114] [PMID] []
81. Liu Y, Zhen W, Jin L, Zhang S, Sun G, Zhang T, et al. All-in-One Theranostic Nanoagent with Enhanced Reactive Oxygen Species Generation and Modulating Tumor Mi¬croenvironment Ability for Effective Tumor Eradication. ACS Nano. 2018;12(5):4886-93. DOI: 10.1021/acsna¬no.8b01893 PMID: 29727164. [DOI:10.1021/acsnano.8b01893] [PMID]
82. Li Z, Hu Y, Miao Z, Xu H, Li C, Zhao Y, et al. Dual-Stim¬uli Responsive Bismuth Nanoraspberries for Multimod¬al Imaging and Combined Cancer Therapy. Nano Lett. 2018;18(11):6778-88. DOI: 10.1021/acs.nanolett.8b02639 PMID: 30288978. [DOI:10.1021/acs.nanolett.8b02639] [PMID]
83. Feng W, Han X, Wang R, Gao X, Hu P, Yue W, et al. Nanocatalysts-Augmented and Photothermal-En¬hanced Tumor-Specific Sequential Nanocatalytic Ther¬apy in Both NIR-I and NIR-II Biowindows. Adv Mater. 2019;31(5):e1805919. DOI: 10.1002/adma.201805919 PMID: 30536723. [DOI:10.1002/adma.201805919] [PMID]
84. Hou L, Shan X, Hao L, Feng Q, Zhang Z. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic plat¬form. Acta Biomater. 2017;54:307-20. DOI: 10.1016/j.act¬bio.2017.03.005 PMID: 28274767. [DOI:10.1016/j.actbio.2017.03.005] [PMID]
85. Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, et al. Recent Progress in Near Infrared Light Triggered Pho¬todynamic Therapy. Small. 2017;13(44). DOI: 10.1002/ smll.201702299 PMID: 28961374. [DOI:10.1002/smll.201702299] [PMID]
86. Wu F, Zhang M, Chu X, Zhang Q, Su Y, Sun B, et al. Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chemical Engineering Journal. 2019;370:387-99. DOI: https://doi. org/10.1016/j.cej.2019.03.228. [DOI:10.1016/j.cej.2019.03.228]
87. Wang C, Jia X, Zhen W, Zhang M, Jiang X. Small- Sized MOF-Constructed Multifunctional Diagnosis and Therapy Platform for Tumor. ACS Biomater Sci Eng. 2019;5(9):4435-41. DOI: 10.1021/acsbiomateri¬als.9b00813 PMID: 33438409. [DOI:10.1021/acsbiomaterials.9b00813] [PMID]
88. Sharma S, Sethi K, Roy I. Magnetic nanoscale metal-or¬ganic frameworks for magnetically aided drug delivery and photodynamic therapy. New Journal of Chemistry. 2017;41(20):11860-6. DOI: 10.1039/C7NJ02032E. [DOI:10.1039/C7NJ02032E]
89. Zhang FM, Dong H, Zhang X, Sun XJ, Liu M, Yang DD, et al. Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Appl Mater Interfaces. 2017;9(32):27332-7. DOI: 10.1021/acsa¬mi.7b08451 PMID: 28745483. [DOI:10.1021/acsami.7b08451] [PMID]
90. Xu J, Wang XF, Chen P, Liu FT, Zheng SC, Ye H, et al. RNA Interference in Moths: Mechanisms, Applications, and Progress. Genes (Basel). 2016;7(10). DOI: 10.3390/ genes7100088 PMID: 27775569. [DOI:10.3390/genes7100088] [PMID] []
91. Xiong XB, Lavasanifar A. Traceable multifunctional micel¬lar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano. 2011;5(6):5202-13. DOI: 10.1021/nn2013707 PMID: 21627074. [DOI:10.1021/nn2013707] [PMID]
92. Shahzad MM, Lopez-Berestein G, Sood AK. Novel strat¬egies for reversing platinum resistance. Drug Resist Up¬dat. 2009;12(6):148-52. DOI: 10.1016/j.drup.2009.09.001 PMID: 19805003. [DOI:10.1016/j.drup.2009.09.001] [PMID] []
93. Yellepeddi VK, Vangara KK, Kumar A, Palakurthi S. Com¬parative evaluation of small-molecule chemosensitizers in reversal of cisplatin resistance in ovarian cancer cells. An¬ticancer Res. 2012;32(9):3651-8. PMID: 22993302.
94. He C, Lu K, Liu D, Lin W. Nanoscale metal-organic frame¬works for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc. 2014;136(14):5181-4. DOI: 10.1021/ja4098862 PMID: 24669930. [DOI:10.1021/ja4098862] [PMID] []
95. Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: compari¬son with selenomethionine in mice. Free Radic Biol Med. 2007;42(10):1524-33. DOI: 10.1016/j.freerad-biomed.2007.02.013 PMID: 17448899. [DOI:10.1016/j.freeradbiomed.2007.02.013] [PMID]
96. Levina A, Mitra A, Lay PA. Recent developments in ru¬thenium anticancer drugs. Metallomics. 2009;1(6):458-70. DOI: 10.1039/b904071d PMID: 21305154. [DOI:10.1039/b904071d] [PMID]
97. Song W, Kuang J, Li CX, Zhang M, Zheng D, Zeng X, et al. Enhanced Immunotherapy Based on Photodynam¬ic Therapy for Both Primary and Lung Metastasis Tu¬mor Eradication. ACS Nano. 2018;12(2):1978-89. DOI: 10.1021/acsnano.7b09112 PMID: 29420012. [DOI:10.1021/acsnano.7b09112] [PMID]
98. He Z, Dai Y, Li X, Guo D, Liu Y, Huang X, et al. Hybrid Nanomedicine Fabricated from Photosensitizer-Terminat¬ed Metal-Organic Framework Nanoparticles for Photo¬dynamic Therapy and Hypoxia-Activated Cascade Che¬motherapy. Small. 2019;15(4):e1804131. DOI: 10.1002/ smll.201804131 PMID: 30565431. [DOI:10.1002/smll.201804131] [PMID]
99. Hsu HW, Wall NR, Hsueh CT, Kim S, Ferris RL, Chen CS, et al. Combination antiangiogenic therapy and radia¬tion in head and neck cancers. Oral Oncol. 2014;50(1):19- 26. DOI: 10.1016/j.oraloncology.2013.10.003 PMID: 24269532. [DOI:10.1016/j.oraloncology.2013.10.003] [PMID]
100. Iwamoto Y, Ishii K, Kanda H, Kato M, Miki M, Kajiwara S, et al. Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. J Cancer Res Clin Oncol. 2017;143(6):933-9. DOI: 10.1007/s00432-017-2367-9 PMID: 28243746. [DOI:10.1007/s00432-017-2367-9] [PMID]
101. Lu K, He C, Lin W. A Chlorin-Based Nanoscale Metal-Or¬ganic Framework for Photodynamic Therapy of Colon Cancers. J Am Chem Soc. 2015;137(24):7600-3. DOI: 10.1021/jacs.5b04069 PMID: 26068094. [DOI:10.1021/jacs.5b04069] [PMID] []
102. Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, et al. Chlorin-Based Nanoscale Metal-Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immu¬notherapy. J Am Chem Soc. 2016;138(38):12502-10. DOI: 10.1021/jacs.6b06663 PMID: 27575718. [DOI:10.1021/jacs.6b06663] [PMID] []
103. Ni K, Lan G, Chan C, Quigley B, Lu K, Aung T, et al. Na¬noscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Com¬mun. 2018;9(1):2351. DOI: 10.1038/s41467-018-04703-w PMID: 29907739. [DOI:10.1038/s41467-018-04703-w] [PMID] []
104. Lu K, He C, Guo N, Chan C, Ni K, Lan G, et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat Biomed Eng. 2018;2(8):600-10. DOI: 10.1038/s41551-018-0203-4 PMID: 31015630. [DOI:10.1038/s41551-018-0203-4] [PMID]
105. Yang Y, Liu J, Liang C, Feng L, Fu T, Dong Z, et al. Na¬noscale Metal-Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided Photothermal Ther¬apy. ACS Nano. 2016;10(2):2774-81. DOI: 10.1021/acsna¬no.5b07882 PMID: 26799993. [DOI:10.1021/acsnano.5b07882] [PMID]
106. Yang H, Qin C, Yu C, Lu Y, Zhang H, Xue F, et al. RGD-Conjugated Nanoscale Coordination Polymers for Targeted T1- and T2-weighted Magnetic Resonance Im¬aging of Tumors in Vivo. Advanced Functional Materi¬als. 2014;24(12):1738-47. DOI: https://doi.org/10.1002/adfm.201302433 [DOI:10.1002/ adfm.201302433.]
107. Sakamaki Y, Ozdemir J, Heidrick Z, Azzun A, Watson O, Tsuji M, et al. A Bio-Conjugated Chlorin-Based Met¬al-Organic Framework for Targeted Photodynamic Ther¬apy of Triple Negative Breast and Pancreatic Cancers. ACS Appl Bio Mater. 2021;4(2):1432-40. DOI: 10.1021/ acsabm.0c01324 PMID: 34337346. [DOI:10.1021/acsabm.0c01324] [PMID] []
108. Deng Z, Fang C, Ma X, Li X, Zeng YJ, Peng X. One Stone Two Birds: Zr-Fc Metal-Organic Framework Nanosheet for Synergistic Photothermal and Chemodynamic Cancer Therapy. ACS Appl Mater Interfaces. 2020;12(18):20321- 30. DOI: 10.1021/acsami.0c06648 PMID: 32293862. [DOI:10.1021/acsami.0c06648] [PMID]
109. Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, et al. Fu¬siform-Like Copper(II)-Based Metal-Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Thera¬py. ACS Appl Mater Interfaces. 2020;12(15):17254-67. DOI: 10.1021/acsami.0c01539 PMID: 32227859. [DOI:10.1021/acsami.0c01539] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb