1. Cai Y, Wei Z, Song C, Tang C, Han W, Dong X. Optical nano-agents in the second near-infrared window for bio¬medical applications. Chem Soc Rev. 2019;48(1):22-37. DOI: 10.1039/c8cs00494c PMID: 30444505. [
DOI:10.1039/C8CS00494C] [
PMID]
2. Chowdhury MA. Metal-Organic-Frameworks as Contrast Agents in Magnetic Resonance Imaging. ChemBioEng Re¬views. 2017;4(4):225-39. DOI: 10.1002/cben.201600027. [
DOI:10.1002/cben.201600027]
3. Sun SK, Wang HF, Yan XP. Engineering Persistent Lumi¬nescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics. Acc Chem Res. 2018;51(5):1131-43. DOI: 10.1021/acs.accounts.7b00619 PMID: 29664602. [
DOI:10.1021/acs.accounts.7b00619] [
PMID]
4. Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, et al. Chemistry for Positron Emission Tomography: Recent Advances in (11) C-, (18) F-, (13) N-, and (15) O-Labeling Reactions. Angew Chem Int Ed Engl. 2019;58(9):2580- 605. DOI: 10.1002/anie.201805501 PMID: 30054961. [
DOI:10.1002/anie.201805501] [
PMID] [
]
5. Zhao T, Desjardins AE, Ourselin S, Vercauteren T, Xia W. Minimally invasive photoacoustic imaging: Current status and future perspectives. Photoacoustics. 2019;16:100146. DOI: 10.1016/j.pacs.2019.100146 PMID: 31871889. [
DOI:10.1016/j.pacs.2019.100146] [
PMID] [
]
6. Kumar V, Kukkar D, Hashemi B, Kim K-H, Deep A. Advanced Functional Structure-Based Sensing and Im¬aging Strategies for Cancer Detection: Possibilities, Op¬portunities, Challenges, and Prospects. Adv Funct Mater. 2019;29(16):1807859. DOI: 10.1002/adfm.201807859. [
DOI:10.1002/adfm.201807859]
7. Gerwing M, Herrmann K, Helfen A, Schliemann C, Berdel WE, Eisenblatter M, et al. The beginning of the end for conventional RECIST - novel therapies require novel im¬aging approaches. Nat Rev Clin Oncol. 2019;16(7):442-58. DOI: 10.1038/s41571-019-0169-5 PMID: 30718844. [
DOI:10.1038/s41571-019-0169-5] [
PMID]
8. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714-26. DOI: 10.1038/nrc3599 PMID: 24060863. [
DOI:10.1038/nrc3599] [
PMID]
9. Lim WQ, Yang G, Phua SZF, Chen H, Zhao Y. Self-As¬sembled Oxaliplatin(IV) Prodrug-Porphyrin Conjugate for Combinational Photodynamic Therapy and Chemotherapy. ACS Appl Mater Interfaces. 2019;11(18):16391-401. DOI: 10.1021/acsami.9b04557 PMID: 31002492. [
DOI:10.1021/acsami.9b04557] [
PMID]
10. Yang J, Dai D, Lou X, Ma L, Wang B, Yang YW. Supra¬molecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy. Theranostics. 2020;10(2):615-29. DOI: 10.7150/thno.40066 PMID: 31903141. [
DOI:10.7150/thno.40066] [
PMID] [
]
11. Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging Nanotechnology and Advanced Materials for Cancer Ra¬diation Therapy. Adv Mater. 2017;29(32). DOI: 10.1002/ adma.201700996 PMID: 28643452. [
DOI:10.1002/adma.201700996] [
PMID]
12. Nam J, Son S, Park KS, Zou W, Shea LD, Moon JJ. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater. 2019;4(6):398-414. DOI: 10.1038/s41578-019- 0108-1. [
DOI:10.1038/s41578-019-0108-1]
13. Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev. 2017;117(22):13566-638. DOI: 10.1021/acs.chem¬rev.7b00258 PMID: 29048884. [
DOI:10.1021/acs.chemrev.7b00258] [
PMID]
14. Lismont M, Dreesen L, Wuttke S. Metal-Organ¬ic Framework Nanoparticles in Photodynamic Thera¬py: Current Status and Perspectives. Adv Funct Mater. 2017;27(14):1606314. DOI: 10.1002/adfm.201606314. [
DOI:10.1002/adfm.201606314]
15. Cheng L, Wang X, Gong F, Liu T, Liu Z. 2D Nanoma¬terials for Cancer Theranostic Applications. Adv Mater. 2020;32(13):e1902333. DOI: 10.1002/adma.201902333 PMID: 31353752. [
DOI:10.1002/adma.201902333] [
PMID]
16. Liu JN, Bu W, Shi J. Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tu¬mor Hypoxia. Chem Rev. 2017;117(9):6160-224. DOI: 10.1021/acs.chemrev.6b00525 PMID: 28426202. [
DOI:10.1021/acs.chemrev.6b00525] [
PMID]
17. Song N, Lou XY, Ma L, Gao H, Yang YW. Supramolec¬ular nanotheranostics based on pillarenes. Theranostics. 2019;9(11):3075-93. DOI: 10.7150/thno.31858 PMID: 31244942. [
DOI:10.7150/thno.31858] [
PMID] [
]
18. Sun W, Li S, Tang G, Luo Y, Ma S, Sun S, et al. Recent Progress of Nanoscale Metal-Organic Frameworks in Can¬cer Theranostics and the Challenges of Their Clinical Ap¬plication. Int J Nanomedicine. 2019;14:10195-207. DOI: 10.2147/IJN.S230524 PMID: 32099352. [
DOI:10.2147/IJN.S230524] [
PMID] [
]
19. Kang T, Li F, Baik S, Shao W, Ling D, Hyeon T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials. 2017;136:98- 114. DOI: 10.1016/j.biomaterials.2017.05.013 PMID: 28525855. [
DOI:10.1016/j.biomaterials.2017.05.013] [
PMID]
20. Cohen SM. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev. 2012;112(2):970- 1000. DOI: 10.1021/cr200179u PMID: 21916418. [
DOI:10.1021/cr200179u] [
PMID]
21. Vankayala R, Hwang KC. Near-Infrared-Light-Activatable Nanomaterial-Mediated Phototheranostic Nanomedicines: An Emerging Paradigm for Cancer Treatment. Adv Mater. 2018;30(23):e1706320. DOI: 10.1002/adma.201706320 PMID: 29577458. [
DOI:10.1002/adma.201706320] [
PMID]
22. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. En¬gineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320-64. DOI: 10.1002/anie.201403036 PMID: 25294565. [
DOI:10.1002/anie.201403036] [
PMID]
23. Yang J, Yang YW. Metal-Organic Frameworks for Bio¬medical Applications. Small. 2020;16(10):e1906846. DOI: 10.1002/smll.201906846 PMID: 32026590. [
DOI:10.1002/smll.201906846] [
PMID]
24. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444. DOI: 10.1126/sci¬ence.1230444 PMID: 23990564. [
DOI:10.1126/science.1230444] [
PMID]
25. Zhou HC, Long JR, Yaghi OM. Introduction to metal-or¬ganic frameworks. Chem Rev. 2012;112(2):673-4. DOI: 10.1021/cr300014x PMID: 22280456. [
DOI:10.1021/cr300014x] [
PMID]
26. McKinlay AC, Morris RE, Horcajada P, Ferey G, Gref R, Couvreur P, et al. BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed Engl. 2010;49(36):6260-6. DOI: 10.1002/anie.201000048 PMID: 20652915. [
DOI:10.1002/anie.201000048] [
PMID]
27. Wang S, McGuirk CM, d'Aquino A, Mason JA, Mirkin CA. Metal-Organic Framework Nanoparticles. Adv Mater. 2018;30(37):e1800202. DOI: 10.1002/adma.201800202 PMID: 29862586. [
DOI:10.1002/adma.201800202] [
PMID]
28. Carrillo-Carrion C. Nanoscale metal-organic frameworks as key players in the context of drug delivery: evolu¬tion toward theranostic platforms. Anal Bioanal Chem. 2020;412(1):37-54. DOI: 10.1007/s00216-019-02217-y PMID: 31734711. [
DOI:10.1007/s00216-019-02217-y] [
PMID]
29. Sun CY, Qin C, Wang XL, Su ZM. Metal-organ¬ic frameworks as potential drug delivery systems. Expert Opin Drug Deliv. 2013;10(1):89-101. DOI: 10.1517/17425247.2013.741583 PMID: 23140545. [
DOI:10.1517/17425247.2013.741583] [
PMID]
30. Begum S, Hassan Z, Brase S, Woll C, Tsotsalas M. Met¬al-Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications. Acc Chem Res. 2019;52(6):1598-610. DOI: 10.1021/acs. accounts.9b00039 PMID: 30977634. [
DOI:10.1021/acs.accounts.9b00039] [
PMID]
31. Cai W, Wang J, Chu C, Chen W, Wu C, Liu G. Metal-Or¬ganic Framework-Based Stimuli-Responsive Systems for Drug Delivery. Adv Sci (Weinh). 2019;6(1):1801526. DOI: 10.1002/advs.201801526 PMID: 30643728. [
DOI:10.1002/advs.201801526] [
PMID] [
]
32. Beg S, Rahman M, Jain A, Saini S, Midoux P, Pichon C, et al. Nanoporous metal organic frameworks as hybrid poly¬mer-metal composites for drug delivery and biomedical ap¬plications. Drug Discov Today. 2017;22(4):625-37. DOI: 10.1016/j.drudis.2016.10.001 PMID: 27742533. [
DOI:10.1016/j.drudis.2016.10.001] [
PMID]
33. Wu MX, Yang YW. Metal-Organic Framework (MOF)- Based Drug/Cargo Delivery and Cancer Therapy. Adv Ma¬ter. 2017;29(23). DOI: 10.1002/adma.201606134 PMID: 28370555. [
DOI:10.1002/adma.201606134] [
PMID]
34. Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, et al. Met¬al-organic frameworks for stimuli-responsive drug deliv¬ery. Biomaterials. 2020;230:119619. DOI: 10.1016/j.bio¬materials.2019.119619 PMID: 31757529. [
DOI:10.1016/j.biomaterials.2019.119619] [
PMID]
35. Kirchon A, Feng L, Drake HF, Joseph EA, Zhou HC. From fundamentals to applications: a toolbox for ro¬bust and multifunctional MOF materials. Chem Soc Rev. 2018;47(23):8611-38. DOI: 10.1039/c8cs00688a PMID: 30234863. [
DOI:10.1039/C8CS00688A] [
PMID]
36. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, et al. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv Mater. 2018;30(37):e1704303. DOI: 10.1002/adma.201704303 PMID: 29430732. [
DOI:10.1002/adma.201704303] [
PMID]
37. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Nanoparticles of Metal-Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine. Adv Mater. 2018;30(37):e1707365. DOI: 10.1002/adma.201707365 PMID: 29876985. [
DOI:10.1002/adma.201707365] [
PMID]
38. Park J, Jiang Q, Feng D, Mao L, Zhou HC. Size-Controlled Synthesis of Porphyrinic Metal-Organic Framework and Functionalization for Targeted Photodynamic Therapy. J Am Chem Soc. 2016;138(10):3518-25. DOI: 10.1021/ jacs.6b00007 PMID: 26894555. [
DOI:10.1021/jacs.6b00007] [
PMID]
39. Wang XG, Cheng Q, Yu Y, Zhang XZ. Controlled Nucle¬ation and Controlled Growth for Size Predicable Synthe¬sis of Nanoscale Metal-Organic Frameworks (MOFs): A General and Scalable Approach. Angew Chem Int Ed Engl. 2018;57(26):7836-40. DOI: 10.1002/anie.201803766 PMID: 29700914. [
DOI:10.1002/anie.201803766] [
PMID]
40. Li B, Gui B, Hu G, Yuan D, Wang C. Postsynthet¬ic Modification of an Alkyne-Tagged Zirconium Met¬al-Organic Framework via a "Click" Reaction. Inorg Chem. 2015;54(11):5139-41. DOI: 10.1021/acs.inorgc¬hem.5b00535 PMID: 25955401. [
DOI:10.1021/acs.inorgchem.5b00535] [
PMID]
41. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112(2):933-69. DOI: 10.1021/cr200304e PMID: 22098087. [
DOI:10.1021/cr200304e] [
PMID]
42. Giliopoulos D, Zamboulis A, Giannakoudakis D, Bikiaris D, Triantafyllidis K. Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications. Molecules. 2020;25(1). DOI: 10.3390/molecules25010185 PMID: 31906398. [
DOI:10.3390/molecules25010185] [
PMID] [
]
43. Zimpel A, Al Danaf N, Steinborn B, Kuhn J, Hohn M, Bau¬er T, et al. Coordinative Binding of Polymers to Metal-Or¬ganic Framework Nanoparticles for Control of Interactions at the Biointerface. ACS Nano. 2019;13(4):3884-95. DOI: 10.1021/acsnano.8b06287 PMID: 30844241. [
DOI:10.1021/acsnano.8b06287] [
PMID]
44. Gimenez-Marques M, Bellido E, Berthelot T, Simon-Yar¬za T, Hidalgo T, Simon-Vazquez R, et al. GraftFast Sur¬face Engineering to Improve MOF Nanoparticles Fur¬tiveness. Small. 2018;14(40):e1801900. DOI: 10.1002/ smll.201801900 PMID: 30091524. [
DOI:10.1002/smll.201801900] [
PMID]
45. Zhu YD, Chen SP, Zhao H, Yang Y, Chen XQ, Sun J, et al. PPy@MIL-100 Nanoparticles as a pH- and Near-IR-Ir¬radiation-Responsive Drug Carrier for Simultaneous Pho¬tothermal Therapy and Chemotherapy of Cancer Cells. ACS Appl Mater Interfaces. 2016;8(50):34209-17. DOI: 10.1021/acsami.6b11378 PMID: 27998104. [
DOI:10.1021/acsami.6b11378] [
PMID]
46. Deng J, Wang K, Wang M, Yu P, Mao L. Mitochondria Tar¬geted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells. J Am Chem Soc. 2017;139(16):5877- 82. DOI: 10.1021/jacs.7b01229 PMID: 28385016. [
DOI:10.1021/jacs.7b01229] [
PMID]
47. Ning W, Di Z, Yu Y, Zeng P, Di C, Chen D, et al. Imparting Designer Biorecognition Functionality to Metal-Organ¬ic Frameworks by a DNA-Mediated Surface Engineering Strategy. Small. 2018;14(11):e1703812. DOI: 10.1002/ smll.201703812 PMID: 29450964. [
DOI:10.1002/smll.201703812] [
PMID]
48. Zhuang J, Young AP, Tsung CK. Integration of Biomole¬cules with Metal-Organic Frameworks. Small. 2017;13(32). DOI: 10.1002/smll.201700880 PMID: 28640560. [
DOI:10.1002/smll.201700880] [
PMID]
49. Song N, Kakuta T, Yamagishi T-a, Yang Y-W, Ogoshi T. Molecular-Scale Porous Materials Based on Pillar[n] arenes. Chem. 2018;4(9):2029-53. DOI: 10.1016/j.chem¬pr.2018.05.015. [
DOI:10.1016/j.chempr.2018.05.015]
50. Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strat¬egy in the battle against cancer with a bright future. Chem Soc Rev. 2017;46(22):7021-53. DOI: 10.1039/c6cs00898d PMID: 28980674. [
DOI:10.1039/C6CS00898D] [
PMID]
51. Ogoshi T, Kakuta T, Yamagishi TA. Applications of Pil¬lar[n]arene-Based Supramolecular Assemblies. Angew Chem Int Ed Engl. 2019;58(8):2197-206. DOI: 10.1002/ anie.201805884 PMID: 29900642. [
DOI:10.1002/anie.201805884] [
PMID]
52. Feng W, Jin M, Yang K, Pei Y, Pei Z. Supramolecular deliv¬ery systems based on pillararenes. Chem Commun (Camb). 2018;54(97):13626-40. DOI: 10.1039/c8cc08252a PMID: 30444504. [
DOI:10.1039/C8CC08252A] [
PMID]
53. Lou XY, Li YP, Yang YW. Gated Materials: Installing Mac¬rocyclic Arenes-Based Supramolecular Nanovalves on Po¬rous Nanomaterials for Controlled Cargo Release. Biotech¬nol J. 2019;14(1):e1800354. DOI: 10.1002/biot.201800354 PMID: 30457707. [
DOI:10.1002/biot.201800354] [
PMID]
54. Li Z, Song N, Yang Y-W. Stimuli-Responsive Drug-Deliv¬ery Systems Based on Supramolecular Nanovalves. Matter. 2019;1(2):345-68. DOI: 10.1016/j.matt.2019.05.019. [
DOI:10.1016/j.matt.2019.05.019]
55. Tan LL, Li H, Qiu YC, Chen DX, Wang X, Pan RY, et al. Stimuli-responsive metal-organic frameworks gat¬ed by pillar[5]arene supramolecular switches. Chem Sci. 2015;6(3):1640-4. DOI: 10.1039/c4sc03749a PMID: 30154997. [
DOI:10.1039/C4SC03749A] [
PMID] [
]
56. Tan LL, Li H, Zhou Y, Zhang Y, Feng X, Wang B, et al. Zn(2+)-Triggered Drug Release from Biocompatible Zirco¬nium MOFs Equipped with Supramolecular Gates. Small. 2015;11(31):3807-13. DOI: 10.1002/smll.201500155 PMID: 25919865. [
DOI:10.1002/smll.201500155] [
PMID]
57. Tan LL, Song N, Zhang SX, Li H, Wang B, Yang YW. Ca(2+), pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone dis¬eases. J Mater Chem B. 2016;4(1):135-40. DOI: 10.1039/ c5tb01789k PMID: 32262817. [
DOI:10.1039/C5TB01789K] [
PMID]
58. Yang J, Dai D, Zhang X, Teng L, Ma L, Yang YW. Mul¬tifunctional metal-organic framework (MOF)-based nano¬platforms for cancer therapy: from single to combination therapy. Theranostics. 2023;13(1):295-323. DOI: 10.7150/ thno.80687 PMID: 36593957. [
DOI:10.7150/thno.80687] [
PMID] [
]
59. Yang J, Yang Y-W. Metal-organic framework-based cancer theranostic nanoplatforms. VIEW. 2020;1(2):e20. DOI: 10.1002/viw2.20. [
DOI:10.1002/viw2.20]
60. Pham MH, Vuong GT, Vu AT, Do TO. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic frame¬work nanocrystals. Langmuir. 2011;27(24):15261-7. DOI: 10.1021/la203570h PMID: 22053750. [
DOI:10.1021/la203570h] [
PMID]
61. Wang Y-M, Liu W, Yin X-B. Self-Limiting Growth Na¬noscale Coordination Polymers for Fluorescence and Mag¬netic Resonance Dual-Modality Imaging. Adv Funct Ma¬ter. 2016;26(46):8463-70. DOI: 10.1002/adfm.201602925. [
DOI:10.1002/adfm.201602925]
62. Wang Z, Cohen SM. Postsynthetic modification of met¬al-organic frameworks. Chem Soc Rev. 2009;38(5):1315- 29. DOI: 10.1039/b802258p PMID: 19384440. [
DOI:10.1039/b802258p] [
PMID]
63. Rieter WJ, Taylor KM, An H, Lin W, Lin W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc. 2006;128(28):9024-5. DOI: 10.1021/ja0627444 PMID: 16834362. [
DOI:10.1021/ja0627444] [
PMID] [
]
64. Ray Chowdhuri A, Bhattacharya D, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans. 2016;45(7):2963-73. DOI: 10.1039/ c5dt03736k PMID: 26754449. [
DOI:10.1039/C5DT03736K] [
PMID]
65. Lin J, Xin P, An L, Xu Y, Tao C, Tian Q, et al. Fe(3) O(4)-ZIF-8 assemblies as pH and glutathione responsive T(2)-T(1) switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo. Chem Commun (Camb). 2019;55(4):478-81. DOI: 10.1039/c8cc08943d PMID: 30547169. [
DOI:10.1039/C8CC08943D] [
PMID]
66. Ju Y, Zhang H, Yu J, Tong S, Tian N, Wang Z, et al. Monodisperse Au-Fe(2)C Janus Nanoparticles: An At¬tractive Multifunctional Material for Triple-Modal Im¬aging-Guided Tumor Photothermal Therapy. ACS Nano. 2017;11(9):9239-48. DOI: 10.1021/acsnano.7b04461 PMID: 28850218. [
DOI:10.1021/acsnano.7b04461] [
PMID]
67. deKrafft KE, Xie Z, Cao G, Tran S, Ma L, Zhou OZ, et al. Iodinated nanoscale coordination polymers as poten¬tial contrast agents for computed tomography. Angew Chem Int Ed Engl. 2009;48(52):9901-4. DOI: 10.1002/ anie.200904958 PMID: 19937883. [
DOI:10.1002/anie.200904958] [
PMID]
68. Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo phar¬macokinetics and X-ray-contrast-imaging studies. Small. 2007;3(2):333-41. DOI: 10.1002/smll.200600427 PMID: 17262759. [
DOI:10.1002/smll.200600427] [
PMID]
69. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129(24):7661-5. DOI: 10.1021/ja071471p PMID: 17530850. [
DOI:10.1021/ja071471p] [
PMID]
70. Shang W, Zeng C, Du Y, Hui H, Liang X, Chi C, et al. Core-Shell Gold Nanorod@Metal-Organic Framework Nanoprobes for Multimodality Diagnosis of Glioma. Adv Mater. 2017;29(3). DOI: 10.1002/adma.201604381 PMID: 27859713. [
DOI:10.1002/adma.201604381] [
PMID]
71. Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseas¬es. Adv Drug Deliv Rev. 2014;76:2-20. DOI: 10.1016/j. addr.2014.07.011 PMID: 25086372. [
DOI:10.1016/j.addr.2014.07.011] [
PMID] [
]
72. Chen D, Yang D, Dougherty CA, Lu W, Wu H, He X, et al. In Vivo Targeting and Positron Emission Tomography Imag¬ing of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials. ACS Nano. 2017;11(4):4315- 27. DOI: 10.1021/acsnano.7b01530 PMID: 28345871. [
DOI:10.1021/acsnano.7b01530] [
PMID] [
]
73. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK. Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for pH Sensitive Tar¬geted Anticancer Drug Delivery. ACS Appl Mater Interfac¬es. 2016;8(26):16573-83. DOI: 10.1021/acsami.6b03988 PMID: 27305490. [
DOI:10.1021/acsami.6b03988] [
PMID]
74. Liu W, Wang YM, Li YH, Cai SJ, Yin XB, He XW, et al. Fluorescent Imaging-Guided Chemotherapy-and-Photody¬namic Dual Therapy with Nanoscale Porphyrin Metal-Or¬ganic Framework. Small. 2017;13(17). DOI: 10.1002/ smll.201603459 PMID: 28244202. [
DOI:10.1002/smll.201603459] [
PMID]
75. Ryu U, Yoo J, Kwon W, Choi KM. Tailoring Nanocrystal¬line Metal-Organic Frameworks as Fluorescent Dye Car¬riers for Bioimaging. Inorg Chem. 2017;56(21):12859-65. DOI: 10.1021/acs.inorgchem.7b01684 PMID: 29028316. [
DOI:10.1021/acs.inorgchem.7b01684] [
PMID]
76. Zhang R, Qiao C, Jia Q, Wang Y, Huang H, Chang W, et al. Highly Stable and Long-Circulating Metal-Organic Frame¬works Nanoprobes for Sensitive Tumor Detection In Vivo. Adv Healthc Mater. 2019;8(19):e1900761. DOI: 10.1002/ adhm.201900761 PMID: 31368240. [
DOI:10.1002/adhm.201900761] [
PMID]
77. Skliarenko J, Warde P. Practical and clinical applications of radiation therapy. Medicine. 2016;44(1):15-9. DOI: 10.1016/j.mpmed.2015.10.016. [
DOI:10.1016/j.mpmed.2015.10.016]
78. Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, et al. Nanoscale metal-organic frameworks for combined photodynam¬ic & radiation therapy in cancer treatment. Biomaterials. 2016;97:1-9. DOI: 10.1016/j.biomaterials.2016.04.034 PMID: 27155362. [
DOI:10.1016/j.biomaterials.2016.04.034] [
PMID]
79. Lan G, Ni K, Veroneau SS, Luo T, You E, Lin W. Nanoscale Metal-Organic Framework Hierarchically Combines High-Z Components for Multifarious Radio-Enhancement. J Am Chem Soc. 2019;141(17):6859-63. DOI: 10.1021/ jacs.9b03029 PMID: 30998341. [
DOI:10.1021/jacs.9b03029] [
PMID]
80. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an up¬date. CA Cancer J Clin. 2011;61(4):250-81. DOI: 10.3322/ caac.20114 PMID: 21617154. [
DOI:10.3322/caac.20114] [
PMID] [
]
81. Liu Y, Zhen W, Jin L, Zhang S, Sun G, Zhang T, et al. All-in-One Theranostic Nanoagent with Enhanced Reactive Oxygen Species Generation and Modulating Tumor Mi¬croenvironment Ability for Effective Tumor Eradication. ACS Nano. 2018;12(5):4886-93. DOI: 10.1021/acsna¬no.8b01893 PMID: 29727164. [
DOI:10.1021/acsnano.8b01893] [
PMID]
82. Li Z, Hu Y, Miao Z, Xu H, Li C, Zhao Y, et al. Dual-Stim¬uli Responsive Bismuth Nanoraspberries for Multimod¬al Imaging and Combined Cancer Therapy. Nano Lett. 2018;18(11):6778-88. DOI: 10.1021/acs.nanolett.8b02639 PMID: 30288978. [
DOI:10.1021/acs.nanolett.8b02639] [
PMID]
83. Feng W, Han X, Wang R, Gao X, Hu P, Yue W, et al. Nanocatalysts-Augmented and Photothermal-En¬hanced Tumor-Specific Sequential Nanocatalytic Ther¬apy in Both NIR-I and NIR-II Biowindows. Adv Mater. 2019;31(5):e1805919. DOI: 10.1002/adma.201805919 PMID: 30536723. [
DOI:10.1002/adma.201805919] [
PMID]
84. Hou L, Shan X, Hao L, Feng Q, Zhang Z. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic plat¬form. Acta Biomater. 2017;54:307-20. DOI: 10.1016/j.act¬bio.2017.03.005 PMID: 28274767. [
DOI:10.1016/j.actbio.2017.03.005] [
PMID]
85. Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, et al. Recent Progress in Near Infrared Light Triggered Pho¬todynamic Therapy. Small. 2017;13(44). DOI: 10.1002/ smll.201702299 PMID: 28961374. [
DOI:10.1002/smll.201702299] [
PMID]
86. Wu F, Zhang M, Chu X, Zhang Q, Su Y, Sun B, et al. Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chemical Engineering Journal. 2019;370:387-99. DOI: https://doi. org/10.1016/j.cej.2019.03.228. [
DOI:10.1016/j.cej.2019.03.228]
87. Wang C, Jia X, Zhen W, Zhang M, Jiang X. Small- Sized MOF-Constructed Multifunctional Diagnosis and Therapy Platform for Tumor. ACS Biomater Sci Eng. 2019;5(9):4435-41. DOI: 10.1021/acsbiomateri¬als.9b00813 PMID: 33438409. [
DOI:10.1021/acsbiomaterials.9b00813] [
PMID]
88. Sharma S, Sethi K, Roy I. Magnetic nanoscale metal-or¬ganic frameworks for magnetically aided drug delivery and photodynamic therapy. New Journal of Chemistry. 2017;41(20):11860-6. DOI: 10.1039/C7NJ02032E. [
DOI:10.1039/C7NJ02032E]
89. Zhang FM, Dong H, Zhang X, Sun XJ, Liu M, Yang DD, et al. Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Appl Mater Interfaces. 2017;9(32):27332-7. DOI: 10.1021/acsa¬mi.7b08451 PMID: 28745483. [
DOI:10.1021/acsami.7b08451] [
PMID]
90. Xu J, Wang XF, Chen P, Liu FT, Zheng SC, Ye H, et al. RNA Interference in Moths: Mechanisms, Applications, and Progress. Genes (Basel). 2016;7(10). DOI: 10.3390/ genes7100088 PMID: 27775569. [
DOI:10.3390/genes7100088] [
PMID] [
]
91. Xiong XB, Lavasanifar A. Traceable multifunctional micel¬lar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano. 2011;5(6):5202-13. DOI: 10.1021/nn2013707 PMID: 21627074. [
DOI:10.1021/nn2013707] [
PMID]
92. Shahzad MM, Lopez-Berestein G, Sood AK. Novel strat¬egies for reversing platinum resistance. Drug Resist Up¬dat. 2009;12(6):148-52. DOI: 10.1016/j.drup.2009.09.001 PMID: 19805003. [
DOI:10.1016/j.drup.2009.09.001] [
PMID] [
]
93. Yellepeddi VK, Vangara KK, Kumar A, Palakurthi S. Com¬parative evaluation of small-molecule chemosensitizers in reversal of cisplatin resistance in ovarian cancer cells. An¬ticancer Res. 2012;32(9):3651-8. PMID: 22993302.
94. He C, Lu K, Liu D, Lin W. Nanoscale metal-organic frame¬works for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc. 2014;136(14):5181-4. DOI: 10.1021/ja4098862 PMID: 24669930. [
DOI:10.1021/ja4098862] [
PMID] [
]
95. Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: compari¬son with selenomethionine in mice. Free Radic Biol Med. 2007;42(10):1524-33. DOI: 10.1016/j.freerad-biomed.2007.02.013 PMID: 17448899. [
DOI:10.1016/j.freeradbiomed.2007.02.013] [
PMID]
96. Levina A, Mitra A, Lay PA. Recent developments in ru¬thenium anticancer drugs. Metallomics. 2009;1(6):458-70. DOI: 10.1039/b904071d PMID: 21305154. [
DOI:10.1039/b904071d] [
PMID]
97. Song W, Kuang J, Li CX, Zhang M, Zheng D, Zeng X, et al. Enhanced Immunotherapy Based on Photodynam¬ic Therapy for Both Primary and Lung Metastasis Tu¬mor Eradication. ACS Nano. 2018;12(2):1978-89. DOI: 10.1021/acsnano.7b09112 PMID: 29420012. [
DOI:10.1021/acsnano.7b09112] [
PMID]
98. He Z, Dai Y, Li X, Guo D, Liu Y, Huang X, et al. Hybrid Nanomedicine Fabricated from Photosensitizer-Terminat¬ed Metal-Organic Framework Nanoparticles for Photo¬dynamic Therapy and Hypoxia-Activated Cascade Che¬motherapy. Small. 2019;15(4):e1804131. DOI: 10.1002/ smll.201804131 PMID: 30565431. [
DOI:10.1002/smll.201804131] [
PMID]
99. Hsu HW, Wall NR, Hsueh CT, Kim S, Ferris RL, Chen CS, et al. Combination antiangiogenic therapy and radia¬tion in head and neck cancers. Oral Oncol. 2014;50(1):19- 26. DOI: 10.1016/j.oraloncology.2013.10.003 PMID: 24269532. [
DOI:10.1016/j.oraloncology.2013.10.003] [
PMID]
100. Iwamoto Y, Ishii K, Kanda H, Kato M, Miki M, Kajiwara S, et al. Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. J Cancer Res Clin Oncol. 2017;143(6):933-9. DOI: 10.1007/s00432-017-2367-9 PMID: 28243746. [
DOI:10.1007/s00432-017-2367-9] [
PMID]
101. Lu K, He C, Lin W. A Chlorin-Based Nanoscale Metal-Or¬ganic Framework for Photodynamic Therapy of Colon Cancers. J Am Chem Soc. 2015;137(24):7600-3. DOI: 10.1021/jacs.5b04069 PMID: 26068094. [
DOI:10.1021/jacs.5b04069] [
PMID] [
]
102. Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, et al. Chlorin-Based Nanoscale Metal-Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immu¬notherapy. J Am Chem Soc. 2016;138(38):12502-10. DOI: 10.1021/jacs.6b06663 PMID: 27575718. [
DOI:10.1021/jacs.6b06663] [
PMID] [
]
103. Ni K, Lan G, Chan C, Quigley B, Lu K, Aung T, et al. Na¬noscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat Com¬mun. 2018;9(1):2351. DOI: 10.1038/s41467-018-04703-w PMID: 29907739. [
DOI:10.1038/s41467-018-04703-w] [
PMID] [
]
104. Lu K, He C, Guo N, Chan C, Ni K, Lan G, et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat Biomed Eng. 2018;2(8):600-10. DOI: 10.1038/s41551-018-0203-4 PMID: 31015630. [
DOI:10.1038/s41551-018-0203-4] [
PMID]
105. Yang Y, Liu J, Liang C, Feng L, Fu T, Dong Z, et al. Na¬noscale Metal-Organic Particles with Rapid Clearance for Magnetic Resonance Imaging-Guided Photothermal Ther¬apy. ACS Nano. 2016;10(2):2774-81. DOI: 10.1021/acsna¬no.5b07882 PMID: 26799993. [
DOI:10.1021/acsnano.5b07882] [
PMID]
106. Yang H, Qin C, Yu C, Lu Y, Zhang H, Xue F, et al. RGD-Conjugated Nanoscale Coordination Polymers for Targeted T1- and T2-weighted Magnetic Resonance Im¬aging of Tumors in Vivo. Advanced Functional Materi¬als. 2014;24(12):1738-47. DOI:
https://doi.org/10.1002/adfm.201302433 [
DOI:10.1002/ adfm.201302433.]
107. Sakamaki Y, Ozdemir J, Heidrick Z, Azzun A, Watson O, Tsuji M, et al. A Bio-Conjugated Chlorin-Based Met¬al-Organic Framework for Targeted Photodynamic Ther¬apy of Triple Negative Breast and Pancreatic Cancers. ACS Appl Bio Mater. 2021;4(2):1432-40. DOI: 10.1021/ acsabm.0c01324 PMID: 34337346. [
DOI:10.1021/acsabm.0c01324] [
PMID] [
]
108. Deng Z, Fang C, Ma X, Li X, Zeng YJ, Peng X. One Stone Two Birds: Zr-Fc Metal-Organic Framework Nanosheet for Synergistic Photothermal and Chemodynamic Cancer Therapy. ACS Appl Mater Interfaces. 2020;12(18):20321- 30. DOI: 10.1021/acsami.0c06648 PMID: 32293862. [
DOI:10.1021/acsami.0c06648] [
PMID]
109. Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, et al. Fu¬siform-Like Copper(II)-Based Metal-Organic Framework through Relief Hypoxia and GSH-Depletion Co-Enhanced Starvation and Chemodynamic Synergetic Cancer Thera¬py. ACS Appl Mater Interfaces. 2020;12(15):17254-67. DOI: 10.1021/acsami.0c01539 PMID: 32227859. [
DOI:10.1021/acsami.0c01539] [
PMID]