Volume 7, Issue 3 (Multidisciplinary Cancer Investigation 2023)                   Multidiscip Cancer Investig 2023, 7(3): 9-20 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tamaddon P, Perota G, Dehdari Vais R, Sattarahmady N. Cumulative Effect of a Gold-Poly(o-aminophenol) Nanocomposite and Doxorubicin in Photothermal Therapy, Sonodynamic Therapy, and Chemotherapy of Breast Cancer (MCF-7 Cell Line). Multidiscip Cancer Investig 2023; 7 (3) :9-20
URL: http://mcijournal.com/article-1-379-en.html
1- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran , paria.tmdn@gmail.com
2- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (380 Views)
Introduction: Nowadays, the applications of non-invasive treating cancer methods such as photothermal therapy (PTT) and sonodynamic therapy (SDT) are increasing. These treatments use photo/sonosensitizers, which are activated after being exposed by laser light irradiation and ultrasound (US) exposure, respectively.
Methods: Herein, a gold-poly (ortho-aminophenol) nanocomposite (Au-PoAP NC) with a spherical shape, a diameter of 46±8 nm was synthesized and evaluated as an 808-nm laser photosensitizer (with 30% photothermal efficiency) and a sonosensitizer upon US exposure. Additionally, Au-PoAP NC was appraised with doxorubicin (as a chemotherapy agent) for treating breast cancer cells. The MTT test was done for cell-toxicity evaluation of Au-PoAP NC, doxorubicin, and Au-PoAP NC with doxorubicin with or without irradiation and US exposure (separately and synchronously).
Results: The results proved that light irradiation and US exposure (separately and synchronously) of Au-PoAP NC with doxorubicin significantly enhanced the cell toxicity in other treatment groups. Moreover, cytotoxicity of Au-PoAP NC, doxorubicin, and Au-PoAP NC with doxorubicin toward MCF-7 cells upon PTT and/or SDT was investigated from the aspect of reactive oxygen species (ROS) formation. Calculating the combination indices revealed that synchronous administration of Au-PoAP NC and doxorubicin and light irradiation and US exposure represented a synergistic therapeutic manner for treating cancer cells.
Conclusion: This study proved that the synchronous combination of PTT and SDT using Au-PoAP NC with doxorubicin would be an exemplary approach for treating the breast cancer cell line of MCF-7.
Full-Text [PDF 951 kb]   (203 Downloads)    
Select article type: Original/Research Article | Subject: Genetics
Received: 2023/01/28 | Accepted: 2023/06/29 | ePublished: 2023/07/12

References
1. Hausman DM. What Is Cancer? Perspect Biol Med. 2019;62(4):778-84. DOI: 10.1353/pbm.2019.0046 PMID: 31761807. [DOI:10.1353/pbm.2019.0046] [PMID]
2. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13(11):1387-97. DOI: 10.7150/ijbs.21635 PMID: 29209143. [DOI:10.7150/ijbs.21635] [PMID] []
3. Haume K, Rosa S, Grellet S, Smialek MA, Butterworth KT, Solov'yov AV, et al. Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. 2016;7(1):8. DOI: 10.1186/s12645-016-0021-x PMID: 27867425. [DOI:10.1186/s12645-016-0021-x] [PMID] []
4. Wyld L, Audisio RA, Poston GJ. The evolution of cancer surgery and future perspectives. Nat Rev Clin Oncol. 2015;12(2):115-24. DOI: 10.1038/nrclinonc.2014.191 PMID: 25384943. [DOI:10.1038/nrclinonc.2014.191] [PMID]
5. Deng GL, Zeng S, Shen H. Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges. World J Hepatol. 2015;7(5):787-98. DOI: 10.4254/wjh.v7.i5.787 PMID: 25914779. [DOI:10.4254/wjh.v7.i5.787] [PMID] []
6. Kim HS, Lee DY. Near-Infrared-Responsive Cancer Photothermal and Photodynamic Therapy Using Gold Nanoparticles. Polymers (Basel). 2018;10(9). DOI: 10.3390/polym10090961 PMID: 30960886. [DOI:10.3390/polym10090961] [PMID] []
7. Tachibana K, Feril LB, Jr., Ikeda-Dantsuji Y. Sonodynamic therapy. Ultrasonics. 2008;48(4):253-9. DOI: 10.1016/j.ultras.2008.02.003 PMID: 18433819. [DOI:10.1016/j.ultras.2008.02.003] [PMID]
8. Yu T, Wang Z, Mason TJ. A review of research into the uses of low level ultrasound in cancer therapy. Ultrason Sonochem. 2004;11(2):95-103. DOI: 10.1016/S1350-4177(03)00157-3 PMID: 15030786. [DOI:10.1016/S1350-4177(03)00157-3] [PMID]
9. Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy--a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 2004;11(6):349-63. DOI: 10.1016/j.ultsonch.2004.03.004 PMID: 15302020. [DOI:10.1016/j.ultsonch.2004.03.004] [PMID]
10. Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, et al. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem Eng J. 2018;340:155-72. DOI: 10.1016/j.cej.2018.01.060 PMID: 30881202. [DOI:10.1016/j.cej.2018.01.060] [PMID] []
11. McHale AP, Callan JF, Nomikou N, Fowley C, Callan B. Sonodynamic Therapy: Concept, Mechanism and Application to Cancer Treatment. Adv Exp Med Biol. 2016;880:429-50. DOI: 10.1007/978-3-319-22536-4_22 PMID: 26486350. [DOI:10.1007/978-3-319-22536-4_22] [PMID]
12. Wang P, Wang X, Ma L, Sahi S, Li L, Wang X, et al. Nanosonosensitization by Using Copper-Cysteamine Nanoparticles Augmented Sonodynamic Cancer Treatment. Part Part Syst Charact. 2018;35(4):1700378. DOI: https://doi.org/10.1002/ppsc.201700378 [DOI:10.1002/ppsc.201700378.]
13. Yang Z, Yao J, Wang J, Zhang C, Cao Y, Hao L, et al. Ferrite-encapsulated nanoparticles with stable photothermal performance for multimodal imaging-guided atherosclerotic plaque neovascularization therapy. Biomater Sci. 2021;9(16):5652-64. DOI: 10.1039/d1bm00343g PMID: 34259244. [DOI:10.1039/D1BM00343G] [PMID]
14. Yao J, Yang Z, Huang L, Yang C, Wang J, Cao Y, et al. Low-Intensity Focused Ultrasound-Responsive Ferrite-Encapsulated Nanoparticles for Atherosclerotic Plaque Neovascularization Theranostics. Adv Sci (Weinh). 2021;8(19):e2100850. DOI: 10.1002/advs.202100850 PMID: 34382370. [DOI:10.1002/advs.202100850] [PMID] []
15. Bernard V, Mornstein V, Jaroš J, Sedláčková M, Škorpíková J. Combined effect of silver nanoparticles and therapeutical ultrasound on ovarian carcinoma cells A2780. J Appl Biomed. 2014;12(3):137-45. [DOI:10.1016/j.jab.2014.01.002]
16. Boca SC, Potara M, Gabudean AM, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311(2):131-40. DOI: 10.1016/j.canlet.2011.06.022 PMID: 21840122. [DOI:10.1016/j.canlet.2011.06.022] [PMID]
17. Wang T, Zhang L, Su Z, Wang C, Liao Y, Fu Q. Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS Appl Mater Interfaces. 2011;3(7):2479-86. DOI: 10.1021/am200364e PMID: 21604817. [DOI:10.1021/am200364e] [PMID]
18. Wang J, Jiao Y, Shao Y. Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. Materials (Basel). 2018;11(10). DOI: 10.3390/ma11102041 PMID: 30347751. [DOI:10.3390/ma11102041] [PMID] []
19. Ou G, Li Z, Li D, Cheng L, Liu Z, Wu H. Photothermal therapy by using titanium oxide nanoparticles. Nano Res. 2016;9(5):1236-43. DOI: 10.1007/s12274-016-1019-8. [DOI:10.1007/s12274-016-1019-8]
20. Ninomiya K, Noda K, Ogino C, Kuroda S, Shimizu N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: its application to targeted sonodynamic therapy. Ultrason Sonochem. 2014;21(1):289-94. DOI: 10.1016/j.ultsonch.2013.05.005 PMID: 23746399. [DOI:10.1016/j.ultsonch.2013.05.005] [PMID]
21. Dai ZJ, Li S, Gao J, Xu XN, Lu WF, Lin S, et al. Sonodynamic therapy (SDT): a novel treatment of cancer based on sonosensitizer liposome as a new drug carrier. Med Hypotheses. 2013;80(3):300-2. DOI: 10.1016/j.mehy.2012.12.009 PMID: 23294609. [DOI:10.1016/j.mehy.2012.12.009] [PMID]
22. Anilkumar TS, Lu Y-J, Chen H-A, Hsu H-L, Jose G, Chen J-P. Dual targeted magnetic photosensitive liposomes for photothermal/photodynamic tumor therapy. J Magn Magn Mater. 2019;473:241-52. DOI: https://doi.org/10.1016/j.jmmm.2018.10.020 [DOI:10.1016/j.jmmm.2018.10.020.]
23. Heli H, Rahi A. Synthesis and Applications of Nanoflowers. Recent Pat Nanotechnol. 2016;10(2):86-115. DOI: 10.2174/1872210510999160517102102 PMID: 27502388. [DOI:10.2174/1872210510999160517102102] [PMID]
24. Yang W, Liang H, Ma S, Wang D, Huang J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sustain Mater Technol. 2019;22:e00109. DOI: https://doi.org/10.1016/j.susmat.2019.e00109 [DOI:10.1016/j.susmat.2019.e00109.]
25. Negahdary M, Heli H. An electrochemical peptide-based biosensor for the Alzheimer biomarker amyloid-beta((1-42)) using a microporous gold nanostructure. Mikrochim Acta. 2019;186(12):766. DOI: 10.1007/s00604-019-3903-x PMID: 31713687. [DOI:10.1007/s00604-019-3903-x] [PMID]
26. Sheth RA, Wen X, Li J, Melancon MP, Ji X, Wang YA, et al. Doxorubicin-loaded hollow gold nanospheres for dual photothermal ablation and chemoembolization therapy. Cancer Nanotechnol. 2020;11(1). DOI: 10.1186/s12645-020-00062-8 PMID: 34335988. [DOI:10.1186/s12645-020-00062-8] [PMID] []
27. Kayani Z, Dehdari Vais R, Soratijahromi E, Mohammadi S, Sattarahmady N. Curcumin-gold-polyethylene glycol nanoparticles as a nanosensitizer for photothermal and sonodynamic therapies: In vitro and animal model studies. Photodiagnosis Photodyn Ther. 2021;33:102139. DOI: 10.1016/j.pdpdt.2020.102139 PMID: 33310015. [DOI:10.1016/j.pdpdt.2020.102139] [PMID]
28. Brazzale C, Canaparo R, Racca L, Foglietta F, Durando G, Fantozzi R, et al. Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine (Lond). 2016;11(23):3053-70. DOI: 10.2217/nnm-2016-0293 PMID: 27627904. [DOI:10.2217/nnm-2016-0293] [PMID]
29. Chandran SP, Natarajan SB, Chandraseharan S, Mohd Shahimi MSB. Nano drug delivery strategy of 5-fluorouracil for the treatment of colorectal cancer. J Cancer Res Pract. 2017;4(2):45-8. DOI: https://doi.org/10.1016/j.jcrpr.2017.02.002 [DOI:10.1016/j.jcrpr.2017.02.002.]
30. Ding Y, Zhou YY, Chen H, Geng DD, Wu DY, Hong J, et al. The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials. 2013;34(38):10217-27. DOI: 10.1016/j.biomaterials.2013.09.008 PMID: 24055524. [DOI:10.1016/j.biomaterials.2013.09.008] [PMID]
31. Kim DH, Martin DC. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials. 2006;27(15):3031-7. DOI: 10.1016/j.biomaterials.2005.12.021 PMID: 16443270. [DOI:10.1016/j.biomaterials.2005.12.021] [PMID]
32. Rahi A, Sattarahmady N, Dehdari Vais R, Heli H. Sonoelectrodeposition of gold nanorods at a gold surface - Application for electrocatalytic reduction and determination of nitrofurazone. Sens Actuators B Chem. 2015;210:96-102. DOI: https://doi.org/10.1016/j.snb.2014.12.090 [DOI:10.1016/j.snb.2014.12.090.]
33. Feng J, Gao J, Yang W, Liu R, Shafi M, Zha Z, et al. LSPR optical fiber sensor based on 3D gold nanoparticles with monolayer graphene as a spacer. Opt Express. 2022;30(6):10187-98. DOI: 10.1364/OE.453806 PMID: 35299428. [DOI:10.1364/OE.453806] [PMID]
34. Wang L, Liu N, Ma Z. Novel gold-decorated polyaniline derivatives as redox-active species for simultaneous detection of three biomarkers of lung cancer. J Mater Chem B. 2015;3(14):2867-72. DOI: 10.1039/c5tb00001g PMID: 32262415. [DOI:10.1039/C5TB00001G] [PMID]
35. Negahdary M, Heli H. An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer's disease, using a fern leaves-like gold nanostructure. Talanta. 2019;198:510-7. DOI: 10.1016/j.talanta.2019.01.109 PMID: 30876593. [DOI:10.1016/j.talanta.2019.01.109] [PMID]
36. Wang X, Teng Z, Wang H, Wang C, Liu Y, Tang Y, et al. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system. Int J Clin Exp Pathol. 2014;7(4):1337-47. PMID: 24817930.
37. Pantshwa JM, Kondiah PPD, Choonara YE, Marimuthu T, Pillay V. Nanodrug Delivery Systems for the Treatment of Ovarian Cancer. Cancers (Basel). 2020;12(1). DOI: 10.3390/cancers12010213 PMID: 31952210. [DOI:10.3390/cancers12010213] [PMID] []
38. Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, et al. Lung cancer therapy using doxorubicin and curcumin combination: Targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112:108614. DOI: 10.1016/j.biopha.2019.108614 PMID: 30798129. [DOI:10.1016/j.biopha.2019.108614] [PMID]
39. Salapa J, Bushman A, Lowe K, Irudayaraj J. Nano drug delivery systems in upper gastrointestinal cancer therapy. Nano Converg. 2020;7(1):38. DOI: 10.1186/s40580-020-00247-2 PMID: 33301056. [DOI:10.1186/s40580-020-00247-2] [PMID] []
40. Li S, Zhang D, Sheng S, Sun H. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles. Int J Nanomedicine. 2017;12:5993-6003. DOI: 10.2147/IJN.S137335 PMID: 28860762. [DOI:10.2147/IJN.S137335] [PMID] []
41. van der Zanden SY, Qiao X, Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021;288(21):6095-111. DOI: 10.1111/febs.15583 PMID: 33022843. [DOI:10.1111/febs.15583] [PMID] []
42. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267-85. DOI: 10.2174/092986709788803312 PMID: 19548866. [DOI:10.2174/092986709788803312] [PMID]
43. Roell KR, Reif DM, Motsinger-Reif AA. An Introduction to Terminology and Methodology of Chemical Synergy-Perspectives from Across Disciplines. Front Pharmacol. 2017;8:158. DOI: 10.3389/fphar.2017.00158 PMID: 28473769. [DOI:10.3389/fphar.2017.00158] [PMID] []
44. Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect. 2015;3(3):e00149. DOI: 10.1002/prp2.149 PMID: 26171228. [DOI:10.1002/prp2.149] [PMID] []
45. Huo S, Ma H, Huang K, Liu J, Wei T, Jin S, et al. Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res. 2013;73(1):319-30. DOI: 10.1158/0008-5472.CAN-12-2071 PMID: 23074284. [DOI:10.1158/0008-5472.CAN-12-2071] [PMID]
46. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55(3):403-19. DOI: 10.1016/s0169-409x(02)00226-0 PMID: 12628324. [DOI:10.1016/S0169-409X(02)00226-0] [PMID]
47. Jiang Q, Liu Y, Guo R, Yao X, Sung S, Pang Z, et al. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials. 2019;192:292-308. DOI: 10.1016/j.biomaterials.2018.11.021 PMID: 30465973. [DOI:10.1016/j.biomaterials.2018.11.021] [PMID]
48. Fang XJ, Jiang H, Zhu YQ, Zhang LY, Fan QH, Tian Y. Doxorubicin induces drug resistance and expression of the novel CD44st via NF-kappaB in human breast cancer MCF-7 cells. Oncol Rep. 2014;31(6):2735-42. DOI: 10.3892/or.2014.3131 PMID: 24715151. [DOI:10.3892/or.2014.3131] [PMID]
49. Wu BB, Leung KT, Poon EN. Mitochondrial-Targeted Therapy for Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci. 2022;23(3). DOI: 10.3390/ijms23031912 PMID: 35163838. [DOI:10.3390/ijms23031912] [PMID] []
50. Jackson TL. Intracellular accumulation and mechanism of action of doxorubicin in a spatio-temporal tumor model. J Theor Biol. 2003;220(2):201-13. DOI: 10.1006/jtbi.2003.3156 PMID: 12468292. [DOI:10.1006/jtbi.2003.3156] [PMID]
51. Yoshida T, Kondo T, Ogawa R, Feril LB, Jr., Zhao QL, Watanabe A, et al. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells. Cancer Chemother Pharmacol. 2008;61(4):559-67. DOI: 10.1007/s00280-007-0503-y PMID: 17505825. [DOI:10.1007/s00280-007-0503-y] [PMID]
52. Melamed JR, Edelstein RS, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano. 2015;9(1):6-11. DOI: 10.1021/acsnano.5b00021 PMID: 25590560. [DOI:10.1021/acsnano.5b00021] [PMID]
53. Wang X, Liu Y, Liu T, Mustafa F, Guan Q. Doxorubicin and Zinc phthalocyanine loaded pH-responsive FA-BSP-SA/TPGS micelles for synergistic chemo-photodynamic therapy against tumors. J Drug Deliv Sci Technol. 2022;76:103713. DOI: 10.1016/j.jddst.2022.103713. [DOI:10.1016/j.jddst.2022.103713]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb