Volume 8, Issue 4 (Multidisciplinary Cancer Investigation 2024)                   Multidiscip Cancer Investig 2024, 8(4): 1-16 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahanafrooz Z, Shahbazi Moghadam Z. Differentially Expressed mRNAs in Gefitinib Resistance Human Lung Adenocarcinoma Cell Lines: A Bioinformatics Approach. Multidiscip Cancer Investig 2024; 8 (4) :1-16
URL: http://mcijournal.com/article-1-405-en.html
1- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran , jahanafrooz2018@gmail.com
2- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
Abstract:   (160 Views)
Lung adenocarcinoma (LUAD) is the most common histological subtype of non–small cell lung cancer. Differential gene expression profile of tumors is a crucial event influencing various cancer traits, such as resistance to therapies. We evaluated the mRNA profile, hub genes, and pathways in two gefitinib-resistance (GR) LUAD cell lines. Differentially expressed genes (DEGs) associated with acquired GR were identified from the gene expression profile GSE169513 (for PC9 cells) and GSE123066 (for HCC4006 cells). PPI networks of upregulated mRNAs were obtained based on the STRING database and Cytoscape software. R packages were conducted for enrichment pathway analysis. 7128 and 2812 GR-related DEGs were identified in PC9 and HCC4006 cells, respectively. GR-related genes influence cytokine signaling and extracellular matrix organization in PC9 and HCC4006 cells. The high-expressed hub genes were obtained (19 in PC9 and 16 in HCC4006 GR cells), in which SERPINE1 and CDH2 overlapped in both GR cell lines. SERPINE1 was also the overlapped hub gene in the transcription regulatory networks of both cell lines based on the TRRUST database. Significant correlations between the expression of hub genes and tumor infiltration of cancer-associated fibroblast based on the TIMER2.0 database. Overall, two drug resistance cell lines employed different global gene expression alterations. Targeting the upregulated hub genes could restore immune and mechanical abnormalities of the tumor microenvironment and may be a new approach for overcoming the GR in LUAD.
Full-Text [PDF 2341 kb]   (49 Downloads)    
Select article type: Original/Research Article | Subject: Treatment
Received: 2024/08/28 | Accepted: 2024/11/5 | ePublished: 2024/12/15

References
1. Zhang L, Chen J, Cheng T, Yang H, Li H, Pan C. Identification of the key genes and characterizations of tumor immune microenvironment in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). J Cancer. 2020;11(17):4965. DOI: 10.7150/jca.42531 [DOI:10.7150/jca.42531] [PMID] []
2. Wei N, Song YA, Zhang F, Sun Z, Zhang X. Transcriptome profiling of acquired gefitinib resistant lung cancer cells reveals dramatically changed transcription programs and new treatment targets. Front Oncol 2020;10:1424. DOI: 10.3389/fonc.2020.01424 [DOI:10.3389/fonc.2020.01424] [PMID] []
3. Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: An update and perspective. Drug Resistance Updates. 2021;59:100796. DOI: 10.1016/j.drup.2021.100796 [DOI:10.1016/j.drup.2021.100796] [PMID] []
4. Rueff J, Rodrigues AS. Cancer drug resistance: A brief overview from a genetic viewpoint. Methods Mol Biol1395. 2016:1-18. DOI: 10.1007/978-1-4939-3347-1_1 [DOI:10.1007/978-1-4939-3347-1_1] [PMID]
5. Li G, Ma Y, Yu M, Li X, Chen X, Gao Y, et al. Identification of hub genes and small molecule drugs associated with acquired resistance to gefitinib in non-small cell lung cancer. J Cancer. 2021;12(17):5286. DOI: 10.7150/jca.56506 [DOI:10.7150/jca.56506] [PMID] []
6. Huo M, Zhang J, Huang W, Wang Y. Interplay among metabolism, epigenetic modifications, and gene expression in cancer. Front Cell Dev Biol 2021;9:793428. DOI: 10.3389/fcell.2021.793428 [DOI:10.3389/fcell.2021.793428] [PMID] []
7. Zheng Q, Min S, Zhou Q. Identification of potential diagnostic and prognostic biomarkers for LUAD based on TCGA and GEO databases. Biosci Rep. 2021;41(6):BSR20204370. DOI: 10.1042/BSR20204370 [DOI:10.1042/BSR20204370] [PMID] []
8. Mounir M, Lucchetta M, Silva TC, Olsen C, Bontempi G, Chen X, et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS computational biology. 2019;15(3):e1006701. DOI: 10.1371/journal.pcbi.1006701 [DOI:10.1371/journal.pcbi.1006701] [PMID] []
9. Costa-Silva J, Domingues D, Lopes FM. RNA-Seq differential expression analysis: An extended review and a software tool. PloS one. 2017;12(12):e0190152. DOI: 10.1371/journal.pone.0190152 [DOI:10.1371/journal.pone.0190152] [PMID] []
10. Das K, Samanta S, Pal M. Study on centrality measures in social networks: a survey. Soc Netw Anal Min. 2018;8(13). DOI: 10.1007/s13278-020-00693-0 [DOI:10.1007/s13278-020-00693-0]
11. Yu G. Statistical analysis and visualization of functional profiles for genes and gene clusters. J Integr Biol. 2012;16(5):284-7. DOI: 10.1089/omi.2011.0118 [DOI:10.1089/omi.2011.0118] [PMID] []
12. Agapito G, Pastrello C, Jurisica I. Comprehensive pathway enrichment analysis workflows: COVID-19 case study. Briefings in Bioinformatics. 2021;22(2):676-89. DOI: 10.1093/bib/bbaa377 [DOI:10.1093/bib/bbaa377] []
13. Gable AL, Szklarczyk D, Lyon D, Matias Rodrigues JF, von Mering C. Systematic assessment of pathway databases, based on a diverse collection of user-submitted experiments. Briefings in Bioinformatics. 2022;23(5):bbac355. DOI: 10.1093/bib/bbac355 [DOI:10.1093/bib/bbac355] [PMID] []
14. Xie S, Tu Z, Xiong J, Kang G, Zhao L, Hu W, et al. CXCR4 promotes cisplatin-resistance of non-small cell lung cancer in a CYP1B1-dependent manner. Oncol Rep. 2017;37(2):921-8. DOI: 10.3892/or.2016.5289 [DOI:10.3892/or.2016.5289] [PMID]
15. Nengroo MA, Maheshwari S, Singh A, Verma A, Arya RK, Chaturvedi P, et al. CXCR4 intracellular protein promotes drug resistance and tumorigenic potential by inversely regulating the expression of Death Receptor 5. Cell Death Dis. 2021;12(5):464. DOI: 10.1038/s41419-021-03730-8 [DOI:10.1038/s41419-021-03730-8] [PMID] []
16. Liu K, Bao C, Yao N, Miao C, Varlotto J, Sun Q, et al. Expression of CXCR4 and non-small cell lung cancer prognosis: a meta-analysis. Int J Clin Exp Med 2015;8(5):7435-45.
17. Ham SY, Kwon T, Bak Y, Yu JH, Hong J, Lee SK, et al. Mucin 1-mediated chemo-resistance in lung cancer cells. Oncogenesis. 2016;5(1):e185-e. DOI:10.1038/oncsis.2015.47 [DOI:10.1038/oncsis.2015.47] [PMID] []
18. Yu X, Han C, Su C. Immunotherapy resistance of lung cancer. Cancer drug resist 2022;5(1):114-28. DOI: 10.20517/cdr.2021.101. [DOI:10.20517/cdr.2021.101]
19. Wang B, Tang Z, Gong H, Zhu L, Liu X. Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep. 2017;37:BSR20171092. DOI: 10.1042/BSR20171092 [DOI:10.1042/BSR20171092] [PMID] []
20. Li Q, Tainsky MA. Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses PloS one. 2011;6(12):e28683. DOI: 10.1371/journal.pone.0028683 [DOI:10.1371/journal.pone.0028683] [PMID] []
21. Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y, et al. ALDH1A1 in Cancers: Bidirectional Function, Drug Resistance, and Regulatory Mechanism. Front Oncol. 2022;12:918778. DOI: 10.3389/fonc.2022.918778/full [DOI:10.3389/fonc.2022.918778] [PMID] []
22. Lei HM, Zhang KR, Wang CH, Wang Y, Zhuang GL, Lu LM, et al. Aldehyde dehydrogenase 1A1 confers erlotinib resistance via facilitating the reactive oxygen species-reactive carbonyl species metabolic pathway in lung adenocarcinomas. Theranostics. 2019;9(24):7122-39. DOI: 10.7150/thno.35729 [DOI:10.7150/thno.35729] [PMID] []
23. Dimitrakopoulos FID, Kottorou AE, Antonacopoulou AG, Panagopoulos N, Scopa C, Kalofonou M, et al. Expression of immune system-related membrane receptors CD40, RANK, BAFFR and LTβR is associated with clinical outcome of operated non-small-cell lung cancer patients. J Clin Med. 2019;8(5):741. DOI: 10.3390/jcm8050741 [DOI:10.3390/jcm8050741] [PMID] []
24. Yamamoto C, Basaki Y, Kawahara A, Nakashima K, Kage M, Izumi H, et al. Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations. Cancer Res. 2010;70(21):8715-25. DOI: 10.1158/0008-5472.CAN-10-0043 [DOI:10.1158/0008-5472.CAN-10-0043] [PMID]
25. Yang JD, Ma L, Zhu Z. SERPINE1 as a cancer-promoting gene in gastric adenocarcinoma: facilitates tumour cell proliferation, migration, and invasion by regulating EMT. J Chemother. 2019;31(7-8):408-18. DOI: 10.1080/1120009X.2019.1687996 [DOI:10.1080/1120009X.2019.1687996] [PMID]
26. Ou J, Liao Q, Du Y, Xi W, Meng Q, Li K, et al. SERPINE1 and SERPINB7 as potential biomarkers for intravenous vitamin C treatment in non-small-cell lung cancer. Free Radic Biol Med. 2023;209:96-107. DOI: 10.1016/j.freeradbiomed.2023.10.391 [DOI:10.1016/j.freeradbiomed.2023.10.391] [PMID]
27. Zhang Q, Lei L, Jing D. Knockdown of SERPINE1 reverses resistance of triple-negative breast cancer to paclitaxel via suppression of VEGFA. Oncol Rep. 2020;44(5):1875-84. DOI: 10.3892/or.2020.7770 [DOI:10.3892/or.2020.7770]
28. Wei Q, Miao T, Zhang P, Jiang B, Yan H. Comprehensive analysis to identify GNG7 as a prognostic biomarker in lung adenocarcinoma correlating with immune infiltrates. Front genet. 2022;13:984575. DOI: 10.3389/fgene.2022.984575/full [DOI:10.3389/fgene.2022.984575] [PMID] []
29. Armas-Lopez L, Pina-Sanchez P, Arrieta O, de Alba EG, Ortiz-Quintero B, Santillan-Doherty P, et al. Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients. Oncotarget. 2017;8(40):67056. DOI: 10.18632/oncotarget.17715 [DOI:10.18632/oncotarget.17715] [PMID] []
30. Guo T, Wen XZ, Li ZY, Han HB, Zhang CG, Bai YH, et al. ISL1 predicts poor outcomes for patients with gastric cancer and drives tumor progression through binding to the ZEB1 promoter together with SETD7 Cell Death Dis. 2019;10(2):33. DOI: 10.1038/s41419-018-1278-2 [DOI:10.1038/s41419-018-1278-2] [PMID] []
31. Wu CK, Wei MT, Wu HC, Wu CL, Wu CJ, Liaw H, et al. BMP2 promotes lung adenocarcinoma metastasis through BMP receptor 2-mediated SMAD1/5 activation. Sci Rep. 2022;12:16310. DOI: 10.1038/s41598-022-20788-2 [DOI:10.1038/s41598-022-20788-2] [PMID] []
32. NeMoyer R, Mondal A, Vora M, Langenfeld E, Glover D, Scott M, et al. Targeting bone morphogenetic protein receptor 2 sensitizes lung cancer cells to TRAIL by increasing cytosolic Smac/DIABLO and the downregulation of X-linked inhibitor of apoptosis protein. Cell Commun Signal. 2019;17(1):150. DOI: DOI: 10.1186/s12964-019-0469-5 [DOI:10.1186/s12964-019-0469-5] [PMID] []
33. Song P, Zhou J, Wu K, Wang W, Gu S. The Underlying Mechanism Involved in Gefitinib Resistance and Corresponding Experiment Validation in Lung Cancer. Mediators Inflamm. 2023;2023:9658912. DOI: 10.1155/2023/9658912 [DOI:10.1155/2023/9658912] [PMID] []
34. Manabe T, Yasuda H, Terai H, Kagiwada H, Hamamoto J, Ebisudani T, et al. IGF2 Autocrine-Mediated IGF1R Activation Is a Clinically Relevant Mechanism of Osimertinib Resistance in Lung Cancer. Mol Cancer Res. 2020;18(4):549-59. DOI: DOI: 10.1158/1541-7786.MCR-19-0956 [DOI:10.1158/1541-7786.MCR-19-0956] [PMID]
35. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10(1):1665. [DOI:10.1038/s41467-019-09295-7] [PMID] []
36. Gong C, Fan Y, Zhou X, Lai S, Wang L, Liu J. Comprehensive analysis of expression and prognostic value of GATAs in lung cancer. J Cancer. 2021;12(13):3862. DOI: 10.7150/jca.52623 [DOI:10.7150/jca.52623] [PMID] []
37. Kartikasari AE, Huertas CS, Mitchell A, Plebanski M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front Oncol. 2021;11:692142. DOI: DOI: 10.3389/fonc.2021.692142 [DOI:10.3389/fonc.2021.692142] [PMID] []
38. Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol. 2022;16(21):3828-54. DOI: 10.1002/1878-0261.13319 [DOI:10.1002/1878-0261.13319] [PMID] []
39. Kani K, Garri C, Tiemann K, Malihi PD, Punj V, Nguyen AL, et al. JUN-Mediated Downregulation of EGFR Signaling Is Associated with Resistance to Gefitinib in EGFR-mutant NSCLC Cell Lines. Mol Cancer Ther. 2017;16(8):1645-57. DOI: 10.1158/1535-7163.MCT-16-0564 [DOI:10.1158/1535-7163.MCT-16-0564] [PMID] []
40. Geng Q, Shen Z, Li L, Zhao J. COL1A1 is a prognostic biomarker and correlated with immune infiltrates in lung cancer. PeerJ. 2021;9:e11145. DOI: 10.7717/peerj.11145 [DOI:10.7717/peerj.11145] [PMID] []
41. Sun Y, Yi Y, Gan S, Ye R, Huang C, Li M, et al. miR-574-5p mediates epithelial-mesenchymal transition in small cell lung cancer by targeting vimentin via a competitive endogenous RNA network. Oncol Lett. 2021;21(6):1-9. DOI: 10.3892/ol.2021.12720 [DOI:10.3892/ol.2021.12720] [PMID] []
42. Takatsu F, Suzawa K, Tomida S, Thu YM, Sakaguchi M, Toji T, et al. Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer. J Mol Med (Berl). 2023;101(12):1603-14. DOI: 10.1007/s00109-023-02384-7 [DOI:10.1007/s00109-023-02384-7] [PMID]
43. Liu W, Wei H, Gao Z, Chen G, Liu Y, Gao X, et al. COL5A1 may contribute the metastasis of lung adenocarcinoma. Gene. 2018;665:57-66. DOI: 10.1016/j.gene.2018.04.066 [DOI:10.1016/j.gene.2018.04.066] [PMID]
44. Zhou Y, Wu C, Lu G, Hu Z, Chen Q, Du X. FGF/FGFR signaling pathway involved resistance in various cancer types. J Cancer. 2020;11(8):2000-7. DOI: 10.7150/jca.40531 [DOI:10.7150/jca.40531] [PMID] []
45. Rossow L, Veitl S, Vorlová S, Wax JK, Kuhn AE, Maltzahn V, et al. LOX-catalyzed collagen stabilization is a proximal cause for intrinsic resistance to chemotherapy. Oncogene. 2018;37(36):4921-40. DOI: 10.1038/s41388-018-0320-2 [DOI:10.1038/s41388-018-0320-2] [PMID] []
46. Shi YB, Li J, Lai XN, Jiang R, Zhao RC, Xiong LX. Multifaceted Roles of Caveolin-1 in Lung Cancer: A New Investigation Focused on Tumor Occurrence, Development and Therapy. Cancers. 2020;12(2):291. DOI: 10.3390/cancers12020291 [DOI:10.3390/cancers12020291] [PMID] []
47. Zhang Y, Liu Z, Yang X, Lu W, Chen Y, Lin Y, et al. H3K27 acetylation activated-COL6A1 promotes osteosarcoma lung metastasis by repressing STAT1 and activating pulmonary cancer-associated fibroblasts. Theranostics. 2021;11(3):1473-92. DOI: 10.7150/thno.51245 [DOI:10.7150/thno.51245] [PMID] []
48. Yang H, Sun B, Fan L, Ma W, Xu K, Hall SRR, et al. Multi-scale integrative analyses identify THBS2+ cancer-associated fibroblasts as a key orchestrator promoting aggressiveness in early-stage lung adenocarcinoma. Theranostics. 2022;12(7):3104-30. DOI: 10.7150/thno.69590 [DOI:10.7150/thno.69590] [PMID] []
49. Sun W, Feng J, Yi Q, Xu X, Chen Y, Tang L. SPARC acts as a mediator of TGF‐β1 in promoting epithelial‐to‐mesenchymal transition in A549 and H1299 lung cancer cells. Biofactors. 2018;44(5):453-64. DOI: 10.1002/biof.1442 [DOI:10.1002/biof.1442] [PMID]
50. Hou S, Jin W, Xiao W, Deng B, Wu D, Zhi J, et al. Integrin α5 promotes migration and cisplatin resistance in esophageal squamous cell carcinoma cells. Am J Cancer Res. 2019;9(12):2774-88.
51. Mao K, Lin F, Zhang Y, Zhou H. Identification of key genes and pathways in gefitinib-resistant lung adenocarcinoma using bioinformatics analysis. Evolutionary Bioinformatics. 2021;17:11769343211023767. DOI: 10.1177/11769343211023767 [DOI:10.1177/11769343211023767] [PMID] []
52. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4:11-22. DOI:10.1038/nrc1252 [DOI:10.1038/nrc1252] [PMID]
53. Wang T, Yang C, Li B, Xing Y, Huang J, Zhang Y, et al. Identification of lncRNA-miRNA-mRNA networks linked to non-small lung cancer resistance to inhibitors of epidermal growth factor receptor. Frontiers in Genetics. 2021;12:758591. DOI: 10.3389/fgene.2021.758591 [DOI:10.3389/fgene.2021.758591] [PMID] []
54. Song P, Zhou J, Wu K, Wang W, Gu S. The underlying mechanism involved in gefitinib resistance and corresponding experiment validation in lung cancer. Mediators of Inflammation. 2023;2023(1):9658912. DOI: 10.1155/2023/9658912 [DOI:10.1155/2023/9658912] [PMID] []
55. Wang Y, Wang J, Gao J, Ding M, Li H. The expression of SERPINE1 in colon cancer and its regulatory network and prognostic value. BMC Gastroenterol. 2023;23(1):1-12. DOI: 10.1186/s12876-022-02625-y [DOI:10.1186/s12876-022-02625-y] [PMID] []
56. Chen S, Li Y, Zhu Y, Fei J, Song L, Sun G, et al. SERPINE1 Overexpression Promotes Malignant Progression and Poor Prognosis of Gastric Cancer. J Oncol. 2022;2022:2647825. DOI: 10.1155/2022/2647825 [DOI:10.1155/2022/2647825] [PMID] []
57. Bremnes RM, Al-Shibli K, Donnem T, Sirera R, Al-Saad S, Andersen S, et al. The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: emphasis on non-small cell lung cancer. J Thorac Oncol. 2011;6(4):824-33. DOI: 10.1097/JTO.0b013e3182037b76 [DOI:10.1097/JTO.0b013e3182037b76] [PMID]
58. Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiological reviews. 2020. DOI: 10.1152/physrev.00048.2019 [DOI:10.1152/physrev.00048.2019] [PMID] []
59. Koikawa K, Kibe S, Suizu F, Sekino N, Kim N, Manz TD, et al. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. Cell. 2021;184(18):4753-71. DOI: 10.1016/j.cell.2021.07.020 [DOI:10.1016/j.cell.2021.07.020] [PMID] []
60. Chen B, Dai W, Mei D, Liu T, Li S, He B, et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J Control Release. 2016;241:68-80. DOI: 10.1016/j.jconrel.2016.09.014 [DOI:10.1016/j.jconrel.2016.09.014] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb