Volume 7, Issue 3 (Multidisciplinary Cancer Investigation 2023)                   Multidiscip Cancer Investig 2023, 7(3): 1-8 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lynda A, Salah Eddine B. Elastography Ultrasound for Breast Tumors: Gland-to-Lesion Strain Ratio or Fat-to-Lesion Strain Ratio?. Multidiscip Cancer Investig 2023; 7 (3) :1-8
URL: http://mcijournal.com/article-1-377-en.html
1- Department of Medical Imaging, Faculty of Medicine, University Algiers, Algiers, Algeria , aoudia_lynda@hotmail.com
2- Department of Radiology and Medical Imaging, Pierre and Marie Curie Center, Algiers, Algeria
Abstract:   (321 Views)
Introduction: To evaluate the diagnostic efficiency of the gland-to-lesion strain ratio versus the fat-to-lesion strain ratio for breast tumor diagnosis.
Methods: The prospective study included 375 breast masses in 330 patients. B-mode ultrasound and elastography were performed for each mass. The gland-to-lesion strain ratio and fat-to-lesion strain ratio of the masses were calculated. The elasticity score of the lesions was also evaluated. The area under the curve, sensitivity, and specificity were calculated to compare the gland-to-lesion strain ratio with the fat-to-lesion strain ratio. Histopathological examination was considered the gold standard for final diagnosis.
Results: Three hundred and seventy-five breast masses were included in our study (298 benign and 77 malignant). The gland-to-lesion strain ratio (GLR) and fat-to-lesion strain ratio (FLR) of the malignant lesions were significantly higher than those of benign lesions (P<0.0001 for both). The sensitivity and specificity of fat-to-lesion strain ratio were significantly better than gland-to-lesion strain ratio, (sensitivity, 96.1% versus 72% and specificity, 93.3% versus 81.1%). The area under the curve values for the fat-to-lesion strain ratio (0.990) and the elasticity score (0.972) were significantly higher than those for the gland-to-lesion strain ratio (0.820) (P < 0.0001). However, there was no significant difference between the area under the curve of the fat-to-lesion strain ratio and the area under the curve of the elasticity score (P=0.64).
Conclusion: The fat-to-lesion strain ratio provided better diagnostic performance than the gland-to-lesion strain ratio in breast mass characterization.
Full-Text [PDF 1759 kb]   (250 Downloads)    
Select article type: Original/Research Article | Subject: Supportive and Palliative Care
Received: 2023/03/16 | Accepted: 2023/06/24 | ePublished: 2023/07/25

References
1. Hong AS, Rosen EL, Soo MS, Baker JA. BI-RADS for sonography: positive and negative predictive values of sonographic features. AJR Am J Roentgenol. 2005;184(4):1260-5. DOI: 10.2214/ajr.184.4.01841260 PMID: 15788607. [DOI:10.2214/ajr.184.4.01841260] [PMID]
2. Baker JA, Soo MS. The evolving role of sonography in evaluating solid breast masses. Semin Ultrasound CT MR. 2000;21(4):286-96. DOI: 10.1016/s0887-2171(00)90023-4 PMID: 11014251. [DOI:10.1016/S0887-2171(00)90023-4] [PMID]
3. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341-50. DOI: 10.1148/radiol.2391041676 PMID: 16484352. [DOI:10.1148/radiol.2391041676] [PMID]
4. Cho N, Jang M, Lyou CY, Park JS, Choi HY, Moon WK. Distinguishing benign from malignant masses at breast US: combined US elastography and color doppler US--influence on radiologist accuracy. Radiology. 2012;262(1):80-90. DOI: 10.1148/radiol.11110886 PMID: 22084209. [DOI:10.1148/radiol.11110886] [PMID]
5. Lee SH, Chang JM, Kim WH, Bae MS, Seo M, Koo HR, et al. Added value of shear-wave elastography for evaluation of breast masses detected with screening US imaging. Radiology. 2014;273(1):61-9. DOI: 10.1148/radiol.14132443 PMID: 24955927. [DOI:10.1148/radiol.14132443] [PMID]
6. Choi JS, Han BK, Ko EY, Ko ES, Shin JH, Kim GR. Additional diagnostic value of shear-wave elastography and color Doppler US for evaluation of breast non-mass lesions detected at B-mode US. Eur Radiol. 2016;26(10):3542-9. DOI: 10.1007/s00330-015-4201-6 PMID: 26787603. [DOI:10.1007/s00330-015-4201-6] [PMID]
7. Singla V, Prakash A, Prabhakar N, Singh T, Bal A, Singh G, et al. Does Shear Wave Elastography Score Over Strain Elastography in Breast Masses or Vice Versa? Curr Probl Diagn Radiol. 2020;49(2):96-101. DOI: 10.1067/j.cpradiol.2019.02.013 PMID: 30981528. [DOI:10.1067/j.cpradiol.2019.02.013] [PMID]
8. Jia W, Luo T, Dong Y, Zhang X, Zhan W, Zhou J. Breast Elasticity Imaging Techniques: Comparison of Strain Elastography and Shear-Wave Elastography in the Same Population. Ultrasound Med Biol. 2021;47(1):104-13. DOI: 10.1016/j.ultrasmedbio.2020.09.022 PMID: 33109379. [DOI:10.1016/j.ultrasmedbio.2020.09.022] [PMID]
9. Golatta M, Pfob A, Busch C, Bruckner T, Alwafai Z, Balleyguier C, et al. The potential of combined shear wave and strain elastography to reduce unnecessary biopsies in breast cancer diagnostics - An international, multicentre trial. Eur J Cancer. 2022;161:1-9. DOI: 10.1016/j.ejca.2021.11.005 PMID: 34879299. [DOI:10.1016/j.ejca.2021.11.005] [PMID]
10. Yu Y, Ye X, Yang J, Chen L, Zhang M, He Y, et al. Application of a shear-wave elastography prediction model to distinguish between benign and malignant breast lesions and the adjustment of ultrasound Breast Imaging Reporting and Data System classifications. Clin Radiol. 2022;77(2):e147-e53. DOI: 10.1016/j.crad.2021.10.016 PMID: 34836632. [DOI:10.1016/j.crad.2021.10.016] [PMID]
11. Zhi H, Xiao XY, Yang HY, Ou B, Wen YL, Luo BM. Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol. 2010;17(10):1227-33. DOI: 10.1016/j.acra.2010.05.004 PMID: 20650662. [DOI:10.1016/j.acra.2010.05.004] [PMID]
12. Zhao QL, Ruan LT, Zhang H, Yin YM, Duan SX. Diagnosis of solid breast lesions by elastography 5-point score and strain ratio method. Eur J Radiol. 2012;81(11):3245-9. DOI: 10.1016/j.ejrad.2012.06.004 PMID: 22749109. [DOI:10.1016/j.ejrad.2012.06.004] [PMID]
13. American College of Radiology. ACR BI-RADS Atlas: breast imaging reporting and data system; mammography, ultrasound, magnetic resonance imaging, follow-up and outcome monitoring, data dictionary: ACR, American College of Radiology; 2013.
14. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32-5. DOI: 10.1002/1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3 PMID: 15405679. https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 [DOI:10.1002/1097-0142(1950)3:13.0.CO;2-3] [PMID]
15. Zhou J, Zhou C, Zhan W, Jia X, Dong Y, Yang Z. Elastography ultrasound for breast lesions: fat-to-lesion strain ratio vs gland-to-lesion strain ratio. Eur Radiol. 2014;24(12):3171-7. DOI: 10.1007/s00330-014-3366-8 PMID: 25182624. [DOI:10.1007/s00330-014-3366-8] [PMID]
16. Graziano L, Bitencourt AG, Cohen MP, Guatelli CS, Poli MR, Souza JA, et al. Elastographic Evaluation of Indeterminate Breast Masses on Ultrasound. Rev Bras Ginecol Obstet. 2017;39(2):72-9. DOI: 10.1055/s-0036-1597753 PMID: 28027567. [DOI:10.1055/s-0036-1597753] [PMID] []
17. Chee C, Lombardo P, Schneider M, Danovani R. Comparison of the Fat-to-Lesion Strain Ratio and the Gland-to-Lesion Strain Ratio With Controlled Precompression in Characterizing Indeterminate and Suspicious Breast Lesions on Ultrasound Imaging. J Ultrasound Med. 2019;38(12):3257-66. DOI: 10.1002/jum.15037 PMID: 31140631. [DOI:10.1002/jum.15037] [PMID]
18. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260-74. DOI: 10.1177/016173469802000403 PMID: 10197347. [DOI:10.1177/016173469802000403] [PMID]
19. Zhou J, Zhan W, Chang C, Zhang J, Yang Z, Dong Y, et al. Role of acoustic shear wave velocity measurement in characterization of breast lesions. J Ultrasound Med. 2013;32(2):285-94. DOI: 10.7863/jum.2013.32.2.285 PMID: 23341385. [DOI:10.7863/jum.2013.32.2.285] [PMID]
20. Farrokh A, Wojcinski S, Degenhardt F. [Diagnostic value of strain ratio measurement in the differentiation of malignant and benign breast lesions]. Ultraschall Med. 2011;32(4):400-5. DOI: 10.1055/s-0029-1245335 PMID: 20425688. [DOI:10.1055/s-0029-1245335] [PMID]
21. Thomas A, Degenhardt F, Farrokh A, Wojcinski S, Slowinski T, Fischer T. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol. 2010;17(5):558-63. DOI: 10.1016/j.acra.2009.12.006 PMID: 20171905. [DOI:10.1016/j.acra.2009.12.006] [PMID]
22. Cho N, Moon WK, Kim HY, Chang JM, Park SH, Lyou CY. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med. 2010;29(1):1-7. DOI: 10.7863/jum.2010.29.1.1 PMID: 20040770. [DOI:10.7863/jum.2010.29.1.1] [PMID]
23. Lee JH, Kim SH, Kang BJ, Choi JJ, Jeong SH, Yim HW, et al. Role and clinical usefulness of elastography in small breast masses. Acad Radiol. 2011;18(1):74-80. DOI: 10.1016/j.acra.2010.07.014 PMID: 21115376. [DOI:10.1016/j.acra.2010.07.014] [PMID]
24. Barr RG, Nakashima K, Amy D, Cosgrove D, Farrokh A, Schafer F, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 2: breast. Ultrasound Med Biol. 2015;41(5):1148-60. DOI: 10.1016/j.ultrasmedbio.2015.03.008 PMID: 25795620. [DOI:10.1016/j.ultrasmedbio.2015.03.008] [PMID]
25. Jung NY, Park CS, Kim SH, Jung HS, Kim K, Lee JW, et al. Sonoelastographic strain ratio: how does the position of reference fat influence it? Jpn J Radiol. 2016;34(6):440-7. DOI: 10.1007/s11604-016-0543-5 PMID: 27059216. [DOI:10.1007/s11604-016-0543-5] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb