Volume 7, Issue 4 (Multidisciplinary Cancer Investigation 2023)                   Multidiscip Cancer Investig 2023, 7(4): 1-15 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghvand S, Nasiri H, Sadighi A, Ahmadian Heris J, Shahabi P, Shomali N, et al . Exploring the Significance of p53 Gene in Lung Cancer: Etiological Factors, Clinical Implications, and Therapeutic Approaches. Multidiscip Cancer Investig 2023; 7 (4) :1-15
URL: http://mcijournal.com/article-1-382-en.html
1- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
3- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
4- Department of Medical Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
5- Department of History of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
6- Department of Anatomy, School of Veterinary Medicine, Near East University, Nicosia, North Cyprus
7- Department of Medical Microbiology, Sarab University of Medical Sciences, Sarab, Iran , Bahadoria@tbzmed.ac.ir
8- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
Abstract:   (175 Views)
Lung cancer is a type of cancer that originates in the lungs, which are responsible for breathing. The p53 gene plays a critical crucial role in inhibiting cancer progression by regulating cell growth, DNA repair, and apoptosis. In lung cancer, p53 mutations are common and associated with aggressive tumor growth, chemotherapy resistance, and poor survival outcomes. This article reviews explores the etiological factors and therapeutic approaches related to p53 dysregulation in lung cancer.  Early detection is key for improving treatment response success and patient survival. Research on p53 mutations in lung cancer has provided valuable insights into the molecular mechanisms driving tumorigenesis and treatment response. Targeted therapies for the treatment of lung cancer treatment have shown immense potential by targeting the p53 pathway. It is critical to understand the clinical significance of p53 mutations as they play a crucial role in determining the success of treatment and the patient's prognosis. Personalized treatment approaches must be considered, and future research should focus on developing new targeted therapies, expanding knowledge of p53 mutations in other cancer types, and improving diagnostic tools for to identifying p53 mutations in lung cancer patients. By investing in these areas, we can pave the way for more effective and personalized treatment for lung cancer patients.



 
Keywords: Lung, Cancer, p53, Mutation
Full-Text [PDF 501 kb]   (161 Downloads)    
Select article type: Review Article | Subject: Molecular Mechanisms
Received: 2023/03/21 | Accepted: 2023/08/24 | ePublished: 2023/10/19

References
1. Tao M-H. Epidemiology of lung cancer. In: El-Baz A, Suri JS, editors. Lung Cancer and Imaging: Institute of Physics Publishing; 2019. p. 1-15. DOI: 10.1088/978-0-7503-2540-0ch4 [DOI:10.1088/978-0-7503-2540-0ch4]
2. Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. Ann Glob Health. 2019;85(1). DOI: 10.5334/aogh.2419 PMID: 30741509. [DOI:10.5334/aogh.2419] [PMID] []
3. Bade BC, Dela Cruz CS. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin Chest Med. 2020;41(1):1-24. DOI: 10.1016/j.ccm.2019.10.001 PMID: 32008623. [DOI:10.1016/j.ccm.2019.10.001] [PMID]
4. Schabath MB, Cote ML. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(10):1563-79. DOI: 10.1158/1055-9965.EPI-19-0221 PMID: 31575553. [DOI:10.1158/1055-9965.EPI-19-0221] [PMID] []
5. Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Primers. 2021;7(1):3. DOI: 10.1038/s41572-020-00235-0 PMID: 33446664. [DOI:10.1038/s41572-020-00235-0] [PMID] []
6. Corrales L, Rosell R, Cardona AF, Martin C, Zatarain-Barron ZL, Arrieta O. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit Rev Oncol Hematol. 2020;148:102895. DOI: 10.1016/j.critrevonc.2020.102895 PMID: 32062313. [DOI:10.1016/j.critrevonc.2020.102895] [PMID]
7. Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, et al. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N Engl J Med. 2020;383(7):640-9. DOI: 10.1056/NEJMoa1916623 PMID: 32786189. [DOI:10.1056/NEJMoa1916623] [PMID] []
8. Gupta A, Shah K, Oza MJ, Behl T. Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomed Pharmacother. 2019;109:484-92. DOI: 10.1016/j.biopha.2018.10.155 PMID: 30551517. [DOI:10.1016/j.biopha.2018.10.155] [PMID]
9. Duffy MJ, Synnott NC, Crown J. Mutant p53 as a target for cancer treatment. Eur J Cancer. 2017;83:258-65. DOI: 10.1016/j.ejca.2017.06.023 PMID: 28756138. [DOI:10.1016/j.ejca.2017.06.023] [PMID]
10. Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 2020;12(9):674-87. DOI: 10.1093/jmcb/mjaa040 PMID: 32722796. [DOI:10.1093/jmcb/mjaa040] [PMID] []
11. Levine AJ. P53 and The Immune Response: 40 Years of Exploration-A Plan for the Future. Int J Mol Sci. 2020;21(2). DOI: 10.3390/ijms21020541 PMID: 31952115. [DOI:10.3390/ijms21020541] [PMID] []
12. Xu F, Lin H, He P, He L, Chen J, Lin L, et al. A TP53-associated gene signature for prediction of prognosis and therapeutic responses in lung squamous cell carcinoma. Oncoimmunology. 2020;9(1):1731943. DOI: 10.1080/2162402X.2020.1731943 PMID: 32158625. [DOI:10.1080/2162402X.2020.1731943] [PMID] []
13. Tung MC, Lin PL, Wang YC, He TY, Lee MC, Yeh SD, et al. Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2. Oncotarget. 2015;6(39):41692-705. DOI: 10.18632/oncotarget.6150 PMID: 26497680. [DOI:10.18632/oncotarget.6150] [PMID] []
14. Zhou Y, Hoti N, Ao M, Zhang Z, Zhu H, Li L, et al. Expression of p16 and p53 in non-small-cell lung cancer: clinicopathological correlation and potential prognostic impact. Biomark Med. 2019;13(9):761-71. DOI: 10.2217/bmm-2018-0441 PMID: 31157548. [DOI:10.2217/bmm-2018-0441] [PMID] []
15. Hao XL, Han F, Zhang N, Chen HQ, Jiang X, Yin L, et al. TC2N, a novel oncogene, accelerates tumor progression by suppressing p53 signaling pathway in lung cancer. Cell Death Differ. 2019;26(7):1235-50. DOI: 10.1038/s41418-018-0202-8 PMID: 30254375. [DOI:10.1038/s41418-018-0202-8] [PMID] []
16. Zhang T, Li Y, Zhu R, Song P, Wei Y, Liang T, et al. Transcription Factor p53 Suppresses Tumor Growth by Prompting Pyroptosis in Non-Small-Cell Lung Cancer. Oxid Med Cell Longev. 2019;2019:8746895. DOI: 10.1155/2019/8746895 PMID: 31737176. [DOI:10.1155/2019/8746895] [PMID] []
17. Duffy MJ, Synnott NC, O'Grady S, Crown J. Targeting p53 for the treatment of cancer. Semin Cancer Biol. 2022;79:58-67. DOI: 10.1016/j.semcancer.2020.07.005 PMID: 32741700. [DOI:10.1016/j.semcancer.2020.07.005] [PMID]
18. Nakamura M, Obata T, Daikoku T, Fujiwara H. The Association and Significance of p53 in Gynecologic Cancers: The Potential of Targeted Therapy. Int J Mol Sci. 2019;20(21). DOI: 10.3390/ijms20215482 PMID: 31689961. [DOI:10.3390/ijms20215482] [PMID] []
19. Boutelle AM, Attardi LD. p53 and Tumor Suppression: It Takes a Network. Trends Cell Biol. 2021;31(4):298-310. DOI: 10.1016/j.tcb.2020.12.011 PMID: 33518400. [DOI:10.1016/j.tcb.2020.12.011] [PMID] []
20. Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023;22(2):127-44. DOI: 10.1038/s41573-022-00571-8 PMID: 36216888. [DOI:10.1038/s41573-022-00571-8] [PMID] []
21. Bourdon JC. p53 Family isoforms. Curr Pharm Biotechnol. 2007;8(6):332-6. DOI: 10.2174/138920107783018444 PMID: 18289041. [DOI:10.2174/138920107783018444] [PMID] []
22. Tsao MS, Aviel-Ronen S, Ding K, Lau D, Liu N, Sakurada A, et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol. 2007;25(33):5240-7. DOI: 10.1200/JCO.2007.12.6953 PMID: 18024870. [DOI:10.1200/JCO.2007.12.6953] [PMID]
23. Ahrendt SA, Hu Y, Buta M, McDermott MP, Benoit N, Yang SC, et al. p53 mutations and survival in stage I non-small-cell lung cancer: results of a prospective study. J Natl Cancer Inst. 2003;95(13):961-70. DOI: 10.1093/jnci/95.13.961 PMID: 12837832. [DOI:10.1093/jnci/95.13.961] [PMID]
24. Wudu M, Ren H, Hui L, Jiang J, Zhang S, Xu Y, et al. DRAM2 acts as an oncogene in non-small cell lung cancer and suppresses the expression of p53. J Exp Clin Cancer Res. 2019;38(1):72. DOI: 10.1186/s13046-019-1068-4 PMID: 30755245. [DOI:10.1186/s13046-019-1068-4] [PMID] []
25. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol. 2011;2011:583929. DOI: 10.1155/2011/583929 PMID: 21331359. [DOI:10.1155/2011/583929] [PMID] []
26. Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV. Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res. 2006;34(5):1317-25. DOI: 10.1093/nar/gkj518 PMID: 16522644. [DOI:10.1093/nar/gkj518] [PMID] []
27. Floquet C, Deforges J, Rousset JP, Bidou L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 2011;39(8):3350-62. DOI: 10.1093/nar/gkq1277 PMID: 21149266. [DOI:10.1093/nar/gkq1277] [PMID] []
28. Tong DR, Zhou W, Katz C, Regunath K, Venkatesh D, Ihuegbu C, et al. p53 Frameshift Mutations Couple Loss-of-Function with Unique Neomorphic Activities. Mol Cancer Res. 2021;19(9):1522-33. DOI: 10.1158/1541-7786.MCR-20-0691 PMID: 34045312. [DOI:10.1158/1541-7786.MCR-20-0691] [PMID] []
29. Holmila R, Fouquet C, Cadranel J, Zalcman G, Soussi T. Splice mutations in the p53 gene: case report and review of the literature. Hum Mutat. 2003;21(1):101-2. DOI: 10.1002/humu.9104 PMID: 12497643. [DOI:10.1002/humu.9104] [PMID]
30. Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell. 2017;170(6):1062-78. DOI: 10.1016/j.cell.2017.08.028 PMID: 28886379. [DOI:10.1016/j.cell.2017.08.028] [PMID] []
31. Cooper WA, Lam DC, O'Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis. 2013;5 Suppl 5(Suppl 5):S479-90. DOI: 10.3978/j.issn.2072-1439.2013.08.03 PMID: 24163741.
32. Viktorsson K, De Petris L, Lewensohn R. The role of p53 in treatment responses of lung cancer. Biochem Biophys Res Commun. 2005;331(3):868-80. DOI: 10.1016/j.bbrc.2005.03.192 PMID: 15865943. [DOI:10.1016/j.bbrc.2005.03.192] [PMID]
33. Alvarado-Ortiz E, de la Cruz-Lopez KG, Becerril-Rico J, Sarabia-Sanchez MA, Ortiz-Sanchez E, Garcia-Carranca A. Mutant p53 Gain-of-Function: Role in Cancer Development, Progression, and Therapeutic Approaches. Front Cell Dev Biol. 2020;8:607670. DOI: 10.3389/fcell.2020.607670 PMID: 33644030. [DOI:10.3389/fcell.2020.607670] [PMID] []
34. Smith AG, Macleod KF. Autophagy, cancer stem cells and drug resistance. J Pathol. 2019;247(5):708-18. DOI: 10.1002/path.5222 PMID: 30570140. [DOI:10.1002/path.5222] [PMID] []
35. Lee SB, Lee S, Park JY, Lee SY, Kim HS. Induction of p53-Dependent Apoptosis by Prostaglandin A(2). Biomolecules. 2020;10(3). DOI: 10.3390/biom10030492 PMID: 32213959. [DOI:10.3390/biom10030492] [PMID] []
36. Murai K, Skrupskelyte G, Piedrafita G, Hall M, Kostiou V, Ong SH, et al. Epidermal Tissue Adapts to Restrain Progenitors Carrying Clonal p53 Mutations. Cell Stem Cell. 2018;23(5):687-99 e8. DOI: 10.1016/j.stem.2018.08.017 PMID: 30269904. [DOI:10.1016/j.stem.2018.08.017] [PMID] []
37. Wang HQ, Mulford IJ, Sharp F, Liang J, Kurtulus S, Trabucco G, et al. Inhibition of MDM2 Promotes Antitumor Responses in p53 Wild-Type Cancer Cells through Their Interaction with the Immune and Stromal Microenvironment. Cancer Res. 2021;81(11):3079-91. DOI: 10.1158/0008-5472.CAN-20-0189 PMID: 33504557. [DOI:10.1158/0008-5472.CAN-20-0189] [PMID]
38. Wang X, Sun Q. TP53 mutations, expression and interaction networks in human cancers. Oncotarget. 2017;8(1):624-43. DOI: 10.18632/oncotarget.13483 PMID: 27880943. [DOI:10.18632/oncotarget.13483] [PMID] []
39. Esteban-Burgos L, Wang H, Nieto P, Zheng J, Blanco-Aparicio C, Varela C, et al. Tumor regression and resistance mechanisms upon CDK4 and RAF1 inactivation in KRAS/P53 mutant lung adenocarcinomas. Proc Natl Acad Sci U S A. 2020;117(39):24415-26. DOI: 10.1073/pnas.2002520117 PMID: 32913049. [DOI:10.1073/pnas.2002520117] [PMID] []
40. Brown KR, Mair B, Soste M, Moffat J. CRISPR screens are feasible in TP53 wild-type cells. Mol Syst Biol. 2019;15(8):e8679. DOI: 10.15252/msb.20188679 PMID: 31464370. [DOI:10.15252/msb.20188679] [PMID] []
41. Garcia-Cano J, Sanchez-Tena S, Sala-Gaston J, Figueras A, Vinals F, Bartrons R, et al. Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2. Mol Oncol. 2020;14(1):69-86. DOI: 10.1002/1878-0261.12592 PMID: 31665549. [DOI:10.1002/1878-0261.12592] [PMID] []
42. Aisner DL, Sholl LM, Berry LD, Rossi MR, Chen H, Fujimoto J, et al. The Impact of Smoking and TP53 Mutations in Lung Adenocarcinoma Patients with Targetable Mutations-The Lung Cancer Mutation Consortium (LCMC2). Clin Cancer Res. 2018;24(5):1038-47. DOI: 10.1158/1078-0432.CCR-17-2289 PMID: 29217530. [DOI:10.1158/1078-0432.CCR-17-2289] [PMID] []
43. Martinez-Useros J, Martin-Galan M, Florez-Cespedes M, Garcia-Foncillas J. Epigenetics of Most Aggressive Solid Tumors: Pathways, Targets and Treatments. Cancers (Basel). 2021;13(13). DOI: 10.3390/cancers13133209 PMID: 34198989. [DOI:10.3390/cancers13133209] [PMID] []
44. Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, et al. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021;21(1):703. DOI: 10.1186/s12935-021-02396-8 PMID: 34952583. [DOI:10.1186/s12935-021-02396-8] [PMID] []
45. Canale M, Andrikou K, Priano I, Cravero P, Pasini L, Urbini M, et al. The Role of TP53 Mutations in EGFR-Mutated Non-Small-Cell Lung Cancer: Clinical Significance and Implications for Therapy. Cancers (Basel). 2022;14(5). DOI: 10.3390/cancers14051143 PMID: 35267450. [DOI:10.3390/cancers14051143] [PMID] []
46. Zienolddiny S, Ryberg D, Arab MO, Skaug V, Haugen A. Loss of heterozygosity is related to p53 mutations and smoking in lung cancer. Br J Cancer. 2001;84(2):226-31. DOI: 10.1054/bjoc.2000.1528 PMID: 11161381. [DOI:10.1054/bjoc.2000.1528] [PMID] []
47. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, et al. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989;246(4929):491-4. DOI: 10.1126/science.2554494 PMID: 2554494. [DOI:10.1126/science.2554494] [PMID]
48. Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020;5(1):90. DOI: 10.1038/s41392-020-0196-9 PMID: 32532965. [DOI:10.1038/s41392-020-0196-9] [PMID] []
49. Zhu J, Singh M, Selivanova G, Peuget S. Pifithrin-alpha alters p53 post-translational modifications pattern and differentially inhibits p53 target genes. Sci Rep. 2020;10(1):1049. DOI: 10.1038/s41598-020-58051-1 PMID: 31974452. [DOI:10.1038/s41598-020-58051-1] [PMID] []
50. Chen CY, Hsu YL, Tsai YC, Kuo PL. Kotomolide A arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells. Food Chem Toxicol. 2008;46(7):2476-84. DOI: 10.1016/j.fct.2008.04.016 PMID: 18511169. [DOI:10.1016/j.fct.2008.04.016] [PMID]
51. Nuciforo PG, Luise C, Capra M, Pelosi G, d'Adda di Fagagna F. Complex engagement of DNA damage response pathways in human cancer and in lung tumor progression. Carcinogenesis. 2007;28(10):2082-8. DOI: 10.1093/carcin/bgm108 PMID: 17522062. [DOI:10.1093/carcin/bgm108] [PMID]
52. Nichols CA, Gibson WJ, Brown MS, Kosmicki JA, Busanovich JP, Wei H, et al. Loss of heterozygosity of essential genes represents a widespread class of potential cancer vulnerabilities. Nat Commun. 2020;11(1):2517. DOI: 10.1038/s41467-020-16399-y PMID: 32433464. [DOI:10.1038/s41467-020-16399-y] [PMID] []
53. Marsit CJ, Hasegawa M, Hirao T, Kim DH, Aldape K, Hinds PW, et al. Loss of heterozygosity of chromosome 3p21 is associated with mutant TP53 and better patient survival in non-small-cell lung cancer. Cancer Res. 2004;64(23):8702-7. DOI: 10.1158/0008-5472.CAN-04-2558 PMID: 15574780. [DOI:10.1158/0008-5472.CAN-04-2558] [PMID]
54. Nishisaka T, Takeshima Y, Inai K. Evaluation of p53 gene mutation and loss of heterozygosity of 3p, 9p and 17p in precancerous lesions of 29 lung cancer patients. Hiroshima J Med Sci. 2000;49(2):109-16. PMID: 10920577.
55. Steels E, Paesmans M, Berghmans T, Branle F, Lemaitre F, Mascaux C, et al. Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis. Eur Respir J. 2001;18(4):705-19. DOI: 10.1183/09031936.01.00062201 PMID: 11716177. [DOI:10.1183/09031936.01.00062201] [PMID]
56. Deben C, Deschoolmeester V, Lardon F, Rolfo C, Pauwels P. TP53 and MDM2 genetic alterations in non-small cell lung cancer: Evaluating their prognostic and predictive value. Crit Rev Oncol Hematol. 2016;99:63-73. DOI: 10.1016/j.critrevonc.2015.11.019 PMID: 26689115. [DOI:10.1016/j.critrevonc.2015.11.019] [PMID]
57. Fortunato O, Boeri M, Moro M, Verri C, Mensah M, Conte D, et al. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Cell Death Dis. 2014;5(12):e1564. DOI: 10.1038/cddis.2014.507 PMID: 25501825. [DOI:10.1038/cddis.2014.507] [PMID] []
58. Mounawar M, Mukeria A, Le Calvez F, Hung RJ, Renard H, Cortot A, et al. Patterns of EGFR, HER2, TP53, and KRAS mutations of p14arf expression in non-small cell lung cancers in relation to smoking history. Cancer Res. 2007;67(12):5667-72. DOI: 10.1158/0008-5472.CAN-06-4229 PMID: 17575133. [DOI:10.1158/0008-5472.CAN-06-4229] [PMID]
59. Xing Y, Liu Y, Liu T, Meng Q, Lu H, Liu W, et al. TNFAIP8 promotes the proliferation and cisplatin chemoresistance of non-small cell lung cancer through MDM2/p53 pathway. Cell Commun Signal. 2018;16(1):43. DOI: 10.1186/s12964-018-0254-x PMID: 30064446. [DOI:10.1186/s12964-018-0254-x] [PMID] []
60. Xu Z, Wu W, Yan H, Hu Y, He Q, Luo P. Regulation of p53 stability as a therapeutic strategy for cancer. Biochem Pharmacol. 2021;185:114407. DOI: 10.1016/j.bcp.2021.114407 PMID: 33421376. [DOI:10.1016/j.bcp.2021.114407] [PMID]
61. Ning Y, Hui N, Qing B, Zhuo Y, Sun W, Du Y, et al. ZCCHC10 suppresses lung cancer progression and cisplatin resistance by attenuating MDM2-mediated p53 ubiquitination and degradation. Cell Death Dis. 2019;10(6):414. DOI: 10.1038/s41419-019-1635-9 PMID: 31138778. [DOI:10.1038/s41419-019-1635-9] [PMID] []
62. Putri HE, Nutho B, Rungrotmongkol T, Sritularak B, Vinayanuwattikun C, Chanvorachote P. Bibenzyl analogue DS-1 inhibits MDM2-mediated p53 degradation and sensitizes apoptosis in lung cancer cells. Phytomedicine. 2021;85:153534. DOI: 10.1016/j.phymed.2021.153534 PMID: 33773191. [DOI:10.1016/j.phymed.2021.153534] [PMID]
63. Cheng F, Dou J, Zhang Y, Wang X, Wei H, Zhang Z, et al. Urolithin A Inhibits Epithelial-Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail Pathway. Onco Targets Ther. 2021;14:3199-208. DOI: 10.2147/OTT.S305595 PMID: 34040386. [DOI:10.2147/OTT.S305595] [PMID] []
64. Jo SK, Hong JY, Park HJ, Lee SK. Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells. Biomol Ther (Seoul). 2012;20(6):513-9. DOI: 10.4062/biomolther.2012.20.6.513 PMID: 24009843. [DOI:10.4062/biomolther.2012.20.6.513] [PMID] []
65. Nian W, Ao X, Wu Y, Huang Y, Shao J, Wang Y, et al. miR-223 functions as a potent tumor suppressor of the Lewis lung carcinoma cell line by targeting insulin-like growth factor-1 receptor and cyclin-dependent kinase 2. Oncol Lett. 2013;6(2):359-66. DOI: 10.3892/ol.2013.1375 PMID: 24137330. [DOI:10.3892/ol.2013.1375] [PMID] []
66. Storozhuk Y, Sanli T, Hopmans SN, Schultz C, Farrell T, Cutz JC, et al. Chronic modulation of AMP-Kinase, Akt and mTOR pathways by ionizing radiation in human lung cancer xenografts. Radiat Oncol. 2012;7:71. DOI: 10.1186/1748-717X-7-71 PMID: 22607554. [DOI:10.1186/1748-717X-7-71] [PMID] []
67. Campling BG, el-Deiry WS. Clinical implications of p53 mutations in lung cancer. Methods Mol Med. 2003;75:53-77. DOI: 10.1385/1-59259-324-0:53 PMID: 12407735. [DOI:10.1385/1-59259-324-0:53] [PMID]
68. Scoccianti C, Vesin A, Martel G, Olivier M, Brambilla E, Timsit JF, et al. Prognostic value of TP53, KRAS and EGFR mutations in nonsmall cell lung cancer: the EUELC cohort. Eur Respir J. 2012;40(1):177-84. DOI: 10.1183/09031936.00097311 PMID: 22267755. [DOI:10.1183/09031936.00097311] [PMID]
69. Jiao XD, Qin BD, You P, Cai J, Zang YS. The prognostic value of TP53 and its correlation with EGFR mutation in advanced non-small cell lung cancer, an analysis based on cBioPortal data base. Lung Cancer. 2018;123:70-5. DOI: 10.1016/j.lungcan.2018.07.003 PMID: 30089598. [DOI:10.1016/j.lungcan.2018.07.003] [PMID]
70. Dey A, Wong ET, Bist P, Tergaonkar V, Lane DP. Nutlin-3 inhibits the NFkappaB pathway in a p53-dependent manner: implications in lung cancer therapy. Cell Cycle. 2007;6(17):2178-85. DOI: 10.4161/cc.6.17.4643 PMID: 17786042. [DOI:10.4161/cc.6.17.4643] [PMID]
71. Kumar S, Mohan A, Guleria R. Prognostic implications of circulating anti-p53 antibodies in lung cancer--a review. Eur J Cancer Care (Engl). 2009;18(3):248-54. DOI: 10.1111/j.1365-2354.2008.01019.x PMID: 19432918. [DOI:10.1111/j.1365-2354.2008.01019.x] [PMID]
72. Endoh H, Yatabe Y, Shimizu S, Tajima K, Kuwano H, Takahashi T, et al. RASSF1A gene inactivation in non-small cell lung cancer and its clinical implication. Int J Cancer. 2003;106(1):45-51. DOI: 10.1002/ijc.11184 PMID: 12794755. [DOI:10.1002/ijc.11184] [PMID]
73. Yang S, Che SP, Kurywchak P, Tavormina JL, Gansmo LB, Correa de Sampaio P, et al. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther. 2017;18(3):158-65. DOI: 10.1080/15384047.2017.1281499 PMID: 28121262. [DOI:10.1080/15384047.2017.1281499] [PMID] []
74. Horio Y, Takahashi T, Kuroishi T, Hibi K, Suyama M, Niimi T, et al. Prognostic Significance of p53 Mutations and 3p Deletions in Primary Resected Non-Small Cell Lung Cancer1. Cancer Res. 1993;53(1):1-4. PMID: 8380124.
75. Mitsudomi T, Hamajima N, Ogawa M, Takahashi T. Prognostic Significance of p53 Alterations in Patients with Non-Small Cell Lung Cancer: A Meta-Analysis. Clin Cancer Res. 2000;6(10):4055-63. PMID: 11051256.
76. Schiller JH, Adak S, Feins RH, Keller SM, Fry WA, Livingston RB, et al. Lack of prognostic significance of p53 and K-ras mutations in primary resected non-small-cell lung cancer on E4592: a Laboratory Ancillary Study on an Eastern Cooperative Oncology Group Prospective Randomized Trial of Postoperative Adjuvant Therapy. J Clin Oncol. 2001;19(2):448-57. DOI: 10.1200/JCO.2001.19.2.448 PMID: 11208838. [DOI:10.1200/JCO.2001.19.2.448] [PMID]
77. Qin K, Hou H, Liang Y, Zhang X. Prognostic value of TP53 concurrent mutations for EGFR- TKIs and ALK-TKIs based targeted therapy in advanced non-small cell lung cancer: a meta-analysis. BMC Cancer. 2020;20(1):328. DOI: 10.1186/s12885-020-06805-5 PMID: 32299384. [DOI:10.1186/s12885-020-06805-5] [PMID] []
78. Wang F, Zhao N, Gao G, Deng HB, Wang ZH, Deng LL, et al. Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma. J Cancer Res Clin Oncol. 2020;146(11):2851-9. DOI: 10.1007/s00432-020-03340-5 PMID: 32743759. [DOI:10.1007/s00432-020-03340-5] [PMID]
79. Ciancio N, Galasso MG, Campisi R, Bivona L, Migliore M, Di Maria GU. Prognostic value of p53 and Ki67 expression in fiberoptic bronchial biopsies of patients with non small cell lung cancer. Multidiscip Respir Med. 2012;7(1):29. DOI: 10.1186/2049-6958-7-29 PMID: 22978804. [DOI:10.1186/2049-6958-7-29] [PMID] []
80. Chang YL, Wu CT, Lin SC, Hsiao CF, Jou YS, Lee YC. Clonality and prognostic implications of p53 and epidermal growth factor receptor somatic aberrations in multiple primary lung cancers. Clin Cancer Res. 2007;13(1):52-8. DOI: 10.1158/1078-0432.CCR-06-1743 PMID: 17200338. [DOI:10.1158/1078-0432.CCR-06-1743] [PMID]
81. Ma X, Le Teuff G, Lacas B, Tsao MS, Graziano S, Pignon JP, et al. Prognostic and Predictive Effect of TP53 Mutations in Patients with Non-Small Cell Lung Cancer from Adjuvant Cisplatin-Based Therapy Randomized Trials: A LACE-Bio Pooled Analysis. J Thorac Oncol. 2016;11(6):850-61. DOI: 10.1016/j.jtho.2016.02.002 PMID: 26899019. [DOI:10.1016/j.jtho.2016.02.002] [PMID]
82. Nishizaki M, Meyn RE, Levy LB, Atkinson EN, White RA, Roth JA, et al. Synergistic Inhibition of Human Lung Cancer Cell Growth by Adenovirus-mediated Wild-Type p53 Gene Transfer in Combination with Docetaxel and Radiation Therapeutics in Vitro and in Vivo1. Clin Cancer Res. 2001;7(9):2887-97. PMID: 11555607.
83. Swisher SG, Roth JA, Komaki R, Gu J, Lee JJ, Hicks M, et al. Induction of p53-regulated Genes and Tumor Regression in Lung Cancer Patients after Intratumoral Delivery of Adenoviral p53 (INGN 201) and Radiation Therapy1. Clin Cancer Res. 2003;9(1):93-101. PMID: 12538456.
84. Turrell FK, Kerr EM, Gao M, Thorpe H, Doherty GJ, Cridge J, et al. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev. 2017;31(13):1339-53. DOI: 10.1101/gad.298463.117 PMID: 28790158. [DOI:10.1101/gad.298463.117] [PMID] []
85. Goldstein I, Marcel V, Olivier M, Oren M, Rotter V, Hainaut P. Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther. 2011;18(1):2-11. DOI: 10.1038/cgt.2010.63 PMID: 20966976. [DOI:10.1038/cgt.2010.63] [PMID]
86. Schneider BJ, Kalemkerian GP. Personalized Therapy of Small Cell Lung Cancer. Adv Exp Med Biol. 2016;890:149-74. DOI: 10.1007/978-3-319-24932-2_9 PMID: 26703804. [DOI:10.1007/978-3-319-24932-2_9] [PMID]
87. Salgia R, Hensing T, Campbell N, Salama AK, Maitland M, Hoffman P, et al. Personalized treatment of lung cancer. Semin Oncol. 2011;38(2):274-83. DOI: 10.1053/j.seminoncol.2011.01.012 PMID: 21421117. [DOI:10.1053/j.seminoncol.2011.01.012] [PMID]
88. Yang C, Huang X, Li Y, Chen J, Lv Y, Dai S. Prognosis and personalized treatment prediction in TP53-mutant hepatocellular carcinoma: an in silico strategy towards precision oncology. Brief Bioinform. 2021;22(3). DOI: 10.1093/bib/bbaa164 PMID: 32789496. [DOI:10.1093/bib/bbaa164] [PMID]
89. Chandrasekar D, Tribett E, Ramchandran K. Integrated Palliative Care and Oncologic Care in Non-Small-Cell Lung Cancer. Curr Treat Options Oncol. 2016;17(5):23. DOI: 10.1007/s11864-016-0397-1 PMID: 27032645. [DOI:10.1007/s11864-016-0397-1] [PMID] []
90. Patel S, Player MR. Small-molecule inhibitors of the p53-HDM2 interaction for the treatment of cancer. Expert Opin Investig Drugs. 2008;17(12):1865-82. DOI: 10.1517/13543780802493366 PMID: 19012502. [DOI:10.1517/13543780802493366] [PMID]
91. Celegato M, Messa L, Goracci L, Mercorelli B, Bertagnin C, Spyrakis F, et al. A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett. 2020;470:115-25. DOI: 10.1016/j.canlet.2019.10.046 PMID: 31693922. [DOI:10.1016/j.canlet.2019.10.046] [PMID]
92. Liu Y, Wang X, Wang G, Yang Y, Yuan Y, Ouyang L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur J Med Chem. 2019;176:92-104. DOI: 10.1016/j.ejmech.2019.05.018 PMID: 31100649. [DOI:10.1016/j.ejmech.2019.05.018] [PMID]
93. Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov. 2020;6:53. DOI: 10.1038/s41420-020-0287-y PMID: 32595984. [DOI:10.1038/s41420-020-0287-y] [PMID] []
94. Munagala R, Aqil F, Jeyabalan J, Kandimalla R, Wallen M, Tyagi N, et al. Exosome-mediated delivery of RNA and DNA for gene therapy. Cancer Lett. 2021;505:58-72. DOI: 10.1016/j.canlet.2021.02.011 PMID: 33610731. [DOI:10.1016/j.canlet.2021.02.011] [PMID] []
95. Hasbullah HH, Musa M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int J Mol Sci. 2021;22(21). DOI: 10.3390/ijms222111941 PMID: 34769370. [DOI:10.3390/ijms222111941] [PMID] []
96. Wang DC, Wang W, Zhu B, Wang X. Lung Cancer Heterogeneity and New Strategies for Drug Therapy. Annu Rev Pharmacol Toxicol. 2018;58:531-46. DOI: 10.1146/annurev-pharmtox-010716-104523 PMID: 28977762. [DOI:10.1146/annurev-pharmtox-010716-104523] [PMID]
97. Chen SY, Tsuneyama K, Yen MH, Lee JT, Chen JL, Huang SM. Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer. Sci Rep. 2021;11(1):12033. DOI: 10.1038/s41598-021-91454-2 PMID: 34103583. [DOI:10.1038/s41598-021-91454-2] [PMID] []
98. Kasala ER, Bodduluru LN, Barua CC, Sriram CS, Gogoi R. Benzo(a)pyrene induced lung cancer: Role of dietary phytochemicals in chemoprevention. Pharmacol Rep. 2015;67(5):996-1009. DOI: 10.1016/j.pharep.2015.03.004 PMID: 26398396. [DOI:10.1016/j.pharep.2015.03.004] [PMID]
99. Freedman AN, Michalek AM, Marshall JR, Mettlin CJ, Petrelli NJ, Black JD, et al. Familial and nutritional risk factors for p53 overexpression in colorectal cancer. Cancer Epidemiol Biomarkers Prev. 1996;5(4):285-91.
100. Castejon M, Plaza A, Martinez-Romero J, Fernandez-Marcos PJ, Cabo R, Diaz-Ruiz A. Energy Restriction and Colorectal Cancer: A Call for Additional Research. Nutrients. 2020;12(1). DOI: 10.3390/nu12010114 PMID: 31906264. [DOI:10.3390/nu12010114] [PMID] []
101. Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A, et al. Small RNA combination therapy for lung cancer. Proc Natl Acad Sci U S A. 2014;111(34):E3553-61. DOI: 10.1073/pnas.1412686111 PMID: 25114235. [DOI:10.1073/pnas.1412686111] [PMID] []
102. Patel S, Petty WJ, Sands JM. An overview of lurbinectedin as a new second-line treatment option for small cell lung cancer. Ther Adv Med Oncol. 2021;13:17588359211020529. DOI: 10.1177/17588359211020529 PMID: 34104228. [DOI:10.1177/17588359211020529] [PMID] []
103. Saleh MN, Patel MR, Bauer TM, Goel S, Falchook GS, Shapiro GI, et al. Phase 1 Trial of ALRN-6924, a Dual Inhibitor of MDMX and MDM2, in Patients with Solid Tumors and Lymphomas Bearing Wild-type TP53. Clin Cancer Res. 2021;27(19):5236-47. DOI: 10.1158/1078-0432.CCR-21-0715 PMID: 34301750. [DOI:10.1158/1078-0432.CCR-21-0715] [PMID] []
104. Sammons MA, Nguyen TT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res. 2020;48(16):8848-69. DOI: 10.1093/nar/gkaa666 PMID: 32797160. [DOI:10.1093/nar/gkaa666] [PMID] []
105. Açıkalın Çoşkun K, Tutar M, Al M, Gök Yurttaş A, Abay EC, Yürekli N, et al. Role of p53 in Human Cancers. In: Anwar M, Farooq Z, Tauseef M, Avin Balaji Ragunathrao V, editors. p53 - A Guardian of the Genome and Beyond. London, UK: Books on Demand; 2022. DOI: 10.5772/intechopen.101961 [DOI:10.5772/intechopen.101961]
106. Filipczak PT, Leng S, Tellez CS, Do KC, Grimes MJ, Thomas CL, et al. p53-Suppressed Oncogene TET1 Prevents Cellular Aging in Lung Cancer. Cancer Res. 2019;79(8):1758-68. DOI: 10.1158/0008-5472.CAN-18-1234 PMID: 30622117. [DOI:10.1158/0008-5472.CAN-18-1234] [PMID] []
107. Chou CW, Lin CH, Hsiao TH, Lo CC, Hsieh CY, Huang CC, et al. Therapeutic effects of statins against lung adenocarcinoma via p53 mutant-mediated apoptosis. Sci Rep. 2019;9(1):20403. DOI: 10.1038/s41598-019-56532-6 PMID: 31892709. [DOI:10.1038/s41598-019-56532-6] [PMID] []
108. Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y, et al. Mutant p53 in Cancer Progression and Targeted Therapies. Front Oncol. 2020;10:595187. DOI: 10.3389/fonc.2020.595187 PMID: 33240819. [DOI:10.3389/fonc.2020.595187] [PMID] []
109. Santarpia M, Ciappina G, Spagnolo CC, Squeri A, Passalacqua MI, Aguilar A, et al. Targeted therapies for KRAS-mutant non-small cell lung cancer: from preclinical studies to clinical development-a narrative review. Transl Lung Cancer Res. 2023;12(2):346-68. DOI: 10.21037/tlcr-22-639 PMID: 36895930. [DOI:10.21037/tlcr-22-639] [PMID] []
110. Sun H, Liu SY, Zhou JY, Xu JT, Zhang HK, Yan HH, et al. Specific TP53 subtype as biomarker for immune checkpoint inhibitors in lung adenocarcinoma. EBioMedicine. 2020;60:102990. DOI: 10.1016/j.ebiom.2020.102990 PMID: 32927274. [DOI:10.1016/j.ebiom.2020.102990] [PMID] []
111. Wadowska K, Bil-Lula I, Trembecki L, Sliwinska-Mosson M. Genetic Markers in Lung Cancer Diagnosis: A Review. Int J Mol Sci. 2020;21(13). DOI: 10.3390/ijms21134569 PMID: 32604993. [DOI:10.3390/ijms21134569] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb