1. Gieni M, Avram R, Dickson L, Farrokhyar F, Lovrics P, Faidi S, et al. Local breast cancer recurrence after mastectomy and immediate breast reconstruction for invasive cancer: a meta-analysis. Breast. 2012;21(3):230-6. DOI: 10.1016/j.breast.2011.12.013 PMID: 22225710. [
DOI:10.1016/j.breast.2011.12.013] [
PMID]
2. Shao H, Varamini P. Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells. 2022;11(3). DOI: 10.3390/cells11030388 PMID: 35159207. [
DOI:10.3390/cells11030388] [
PMID] [
]
3. Park J, Lakes RS. Biomaterials: An Introduction. New York, USA: Springer; 2007.
4. Simske SJ, Ayers RA, Bateman TA. Porous Materials for Bone Engineering. MSF. 1997;250:151-82. DOI: 10.4028/www.scientific.net/msf.250.151. [
DOI:10.4028/www.scientific.net/MSF.250.151]
5. Abdulahy SB, Esmaeili Bidhendi M, Vaezi MR, Moosazadeh Moghaddam M. Osteogenesis Improvement of Gelatin-Based Nanocomposite Scaffold by Loading Zoledronic Acid. Front Bioeng Biotechnol. 2022;10:890583. DOI: 10.3389/fbioe.2022.890583 PMID: 35547164. [
DOI:10.3389/fbioe.2022.890583] [
PMID] [
]
6. Flahiff CM, Blackwell AS, Hollis JM, Feldman DS. Analysis of a biodegradable composite for bone healing. J Biomed Mater Res. 1996;32(3):419-24. DOI: 10.1002/(SICI)1097-4636(199611)32:3<419::AID-JBM15>3.0.CO;2-B PMID: 8897147.
https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<419::AID-JBM15>3.0.CO;2-B [
DOI:10.1002/(SICI)1097-4636(199611)32:33.0.CO;2-B]
7. Abdollahi Boraei SB, Nourmohammadi J, Mahdavi FS, Zare Y, Rhee KY, Montero AF, et al. Osteogenesis capability of three-dimensionally printed poly(lactic acid)-halloysite nanotube scaffolds containing strontium ranelate. Nanotechnol Rev. 2022;11(1):1901-10. DOI: 10.1515/ntrev-2022-0113. [
DOI:10.1515/ntrev-2022-0113]
8. Bronzino JD. The Biomedical Engineering Handbook 1. Heidelberg, Germany: Springer; 2000. [
DOI:10.1201/9781003040682]
9. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347-59. DOI: 10.1016/s0142-9612(00)00102-2 PMID: 11055282. [
DOI:10.1016/S0142-9612(00)00102-2] [
PMID]
10. Lee YM, Seol YJ, Lim YT, Kim S, Han SB, Rhyu IC, et al. Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J Biomed Mater Res. 2001;54(2):216-23. DOI: 10.1002/1097-4636(200102)54:2<216::aid-jbm8>3.0.co;2-c PMID: 11093181.
https://doi.org/10.1002/1097-4636(200102)54:2<216::AID-JBM8>3.0.CO;2-C [
DOI:10.1002/1097-4636(200102)54:23.0.CO;2-C] [
PMID]
11. Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, Dehghan MM, Gonzalez Z, Ferrari B. The effect of protelos content on the physicochemical, mechanical and biological properties of gelatin-based scaffolds. Journal of Appl Biotechnol Rep. 2020;7(1):41-7. DOI: 10.30491/jabr.2020.105919.
12. Pilmane M, Salma-Ancane K, Loca D, Locs J, Berzina-Cimdina L. Strontium and strontium ranelate: Historical review of some of their functions. Mater Sci Eng C Mater Biol Appl. 2017;78:1222-30. DOI: 10.1016/j.msec.2017.05.042 PMID: 28575961. [
DOI:10.1016/j.msec.2017.05.042] [
PMID]
13. Abdollahi Boraei SB, Nourmohammadi J, Sadat Mahdavi F, Yus J, Ferrandez-Montero A, Sanchez-Herencia AJ, et al. Effect of SrR delivery in the biomarkers of bone regeneration during the in vitro degradation of HNT/GN coatings prepared by EPD. Colloids Surf B Biointerfaces. 2020;190:110944. DOI: 10.1016/j.colsurfb.2020.110944 PMID: 32155456. [
DOI:10.1016/j.colsurfb.2020.110944] [
PMID]
14. Cianferotti L, D'Asta F, Brandi ML. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis. 2013;5(3):127-39. DOI: 10.1177/1759720X13483187 PMID: 23858336. [
DOI:10.1177/1759720X13483187] [
PMID] [
]
15. Kirschneck C, Wolf M, Reicheneder C, Wahlmann U, Proff P, Roemer P. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats. Eur J Pharmacol. 2014;744:67-75. DOI: 10.1016/j.ejphar.2014.09.039 PMID: 25281203. [
DOI:10.1016/j.ejphar.2014.09.039] [
PMID]
16. Donneau AF, Reginster JY. Cardiovascular safety of strontium ranelate: real-life assessment in clinical practice. Osteoporos Int. 2014;25(2):397-8. DOI: 10.1007/s00198-013-2583-3 PMID: 24322477. [
DOI:10.1007/s00198-013-2583-3] [
PMID] [
]
17. Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, Dehghan MM, Gholami H, Calle Hernández D, et al. Enhanced osteogenesis of gelatin-halloysite nanocomposite scaffold mediated by loading strontium ranelate. Int J Polym Mater Polym Biomater. 2021;70(6):392-402. DOI: 10.1080/00914037.2020.1725754. [
DOI:10.1080/00914037.2020.1725754]
18. Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, Dehghan MM, Gholami H, Gonzalez Z, et al. Capability of core-sheath polyvinyl alcohol-polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration. Biomed Mater. 2021;16(2):025009. DOI: 10.1088/1748-605X/abdb07 PMID: 33434897. [
DOI:10.1088/1748-605X/abdb07] [
PMID]
19. Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv Mat. 2004;16(14):1151-70. DOI:
https://doi.org/10.1002/adma.200400719 [
DOI:10.1002/adma.200400719.]
20. Chen Y, Zheng Z, Zhou R, Zhang H, Chen C, Xiong Z, et al. Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway. ACS Appl Mater Interfaces. 2019;11(17):15986-97. DOI: 10.1021/acsami.8b22606 PMID: 30945836. [
DOI:10.1021/acsami.8b22606] [
PMID]
21. Mao Z, Fang Z, Yang Y, Chen X, Wang Y, Kang J, et al. Strontium ranelate-loaded PLGA porous microspheres enhancing the osteogenesis of MC3T3-E1 cells. RSC Advances. 2017;7(40):24607-15. DOI: 10.1039/C7RA01445G. [
DOI:10.1039/C7RA01445G]
22. Caverzasio J. Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone. 2008;42(6):1131-6. DOI: 10.1016/j.bone.2008.02.010 PMID: 18378206. [
DOI:10.1016/j.bone.2008.02.010] [
PMID]