Volume 7, Issue 3 (Multidisciplinary Cancer Investigation 2023)                   Multidiscip Cancer Investig 2023, 7(3): 21-27 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahi Boraei S B, Pirkani Z, Nourmohammadi J, Abdollahi Boraei B, Dehghan M M, Rahmanian M. Control of Bone Metastasis Caused by Breast Cancer Using Nanocomposite Scaffolds Containing Strontium Ranelate. Multidiscip Cancer Investig 2023; 7 (3) :21-27
URL: http://mcijournal.com/article-1-389-en.html
1- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran , be.abdollahi@ut.ac.ir
2- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
3- Faculty of Life Science Engineering, Faculties of Sciences and Interdisciplinary Technologies, University of Tehran, Tehran, Iran
4- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
5- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
6- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
Abstract:   (298 Views)
Introduction: Bone metastases are one of the most important consequences of breast cancer, and the possibility of developing them is greatly increased due to the late diagnosis of the cancer. In general, systemic treatments for metastases can have many side effects. To reduce this concern, tissue engineering scaffolds containing osteogenesis drugs can be used to minimize these problems as much as possible.
Methods: In this study, polycaprolactone/polyvinyl alcohol (PCL/PVA) composite scaffolds were prepared for use in bone tissue engineering with a weight percentage of strontium ranelate (SrR) drug (0, 5, and 20) by shell-core emulsion electrospinning method. Scaffolds prepared in this study were subjected to scanning electron microscopy (SEM), contact angle, and biodegradation analyses for morphological and structural investigation. Then, to check their biocompatibility, an MTT test was performed.
Results: The results of SEM images showed the nanostructure of the fibers. Also, the presence of interconnected pores with a suitable size was confirmed by the images. MTT results proved the non-toxicity of all prepared scaffolds by high cell viability (˃80%). According to the obtained results, the composite scaffolds containing the drug SrR have been successfully synthesized and have the desired properties for use in bone regeneration applications.
Conclusion: Controlling bone metastases due to breast cancer is an important concern. In this study, the composite scaffold containing strontium ranlate showed suitable physicochemical, biocompatibility, and osteogenesis characteristics.
Full-Text [PDF 531 kb]   (280 Downloads)    
Select article type: Original/Research Article | Subject: Biomedical Engineering and Technologies
Received: 2023/05/9 | Accepted: 2023/07/26 | ePublished: 2023/07/29

References
1. Gieni M, Avram R, Dickson L, Farrokhyar F, Lovrics P, Faidi S, et al. Local breast cancer recurrence after mastectomy and immediate breast reconstruction for invasive cancer: a meta-analysis. Breast. 2012;21(3):230-6. DOI: 10.1016/j.breast.2011.12.013 PMID: 22225710. [DOI:10.1016/j.breast.2011.12.013] [PMID]
2. Shao H, Varamini P. Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells. 2022;11(3). DOI: 10.3390/cells11030388 PMID: 35159207. [DOI:10.3390/cells11030388] [PMID] []
3. Park J, Lakes RS. Biomaterials: An Introduction. New York, USA: Springer; 2007.
4. Simske SJ, Ayers RA, Bateman TA. Porous Materials for Bone Engineering. MSF. 1997;250:151-82. DOI: 10.4028/www.scientific.net/msf.250.151. [DOI:10.4028/www.scientific.net/MSF.250.151]
5. Abdulahy SB, Esmaeili Bidhendi M, Vaezi MR, Moosazadeh Moghaddam M. Osteogenesis Improvement of Gelatin-Based Nanocomposite Scaffold by Loading Zoledronic Acid. Front Bioeng Biotechnol. 2022;10:890583. DOI: 10.3389/fbioe.2022.890583 PMID: 35547164. [DOI:10.3389/fbioe.2022.890583] [PMID] []
6. Flahiff CM, Blackwell AS, Hollis JM, Feldman DS. Analysis of a biodegradable composite for bone healing. J Biomed Mater Res. 1996;32(3):419-24. DOI: 10.1002/(SICI)1097-4636(199611)32:3<419::AID-JBM15>3.0.CO;2-B PMID: 8897147. https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<419::AID-JBM15>3.0.CO;2-B [DOI:10.1002/(SICI)1097-4636(199611)32:33.0.CO;2-B]
7. Abdollahi Boraei SB, Nourmohammadi J, Mahdavi FS, Zare Y, Rhee KY, Montero AF, et al. Osteogenesis capability of three-dimensionally printed poly(lactic acid)-halloysite nanotube scaffolds containing strontium ranelate. Nanotechnol Rev. 2022;11(1):1901-10. DOI: 10.1515/ntrev-2022-0113. [DOI:10.1515/ntrev-2022-0113]
8. Bronzino JD. The Biomedical Engineering Handbook 1. Heidelberg, Germany: Springer; 2000. [DOI:10.1201/9781003040682]
9. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347-59. DOI: 10.1016/s0142-9612(00)00102-2 PMID: 11055282. [DOI:10.1016/S0142-9612(00)00102-2] [PMID]
10. Lee YM, Seol YJ, Lim YT, Kim S, Han SB, Rhyu IC, et al. Tissue-engineered growth of bone by marrow cell transplantation using porous calcium metaphosphate matrices. J Biomed Mater Res. 2001;54(2):216-23. DOI: 10.1002/1097-4636(200102)54:2<216::aid-jbm8>3.0.co;2-c PMID: 11093181. https://doi.org/10.1002/1097-4636(200102)54:2<216::AID-JBM8>3.0.CO;2-C [DOI:10.1002/1097-4636(200102)54:23.0.CO;2-C] [PMID]
11. Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, Dehghan MM, Gonzalez Z, Ferrari B. The effect of protelos content on the physicochemical, mechanical and biological properties of gelatin-based scaffolds. Journal of Appl Biotechnol Rep. 2020;7(1):41-7. DOI: 10.30491/jabr.2020.105919.
12. Pilmane M, Salma-Ancane K, Loca D, Locs J, Berzina-Cimdina L. Strontium and strontium ranelate: Historical review of some of their functions. Mater Sci Eng C Mater Biol Appl. 2017;78:1222-30. DOI: 10.1016/j.msec.2017.05.042 PMID: 28575961. [DOI:10.1016/j.msec.2017.05.042] [PMID]
13. Abdollahi Boraei SB, Nourmohammadi J, Sadat Mahdavi F, Yus J, Ferrandez-Montero A, Sanchez-Herencia AJ, et al. Effect of SrR delivery in the biomarkers of bone regeneration during the in vitro degradation of HNT/GN coatings prepared by EPD. Colloids Surf B Biointerfaces. 2020;190:110944. DOI: 10.1016/j.colsurfb.2020.110944 PMID: 32155456. [DOI:10.1016/j.colsurfb.2020.110944] [PMID]
14. Cianferotti L, D'Asta F, Brandi ML. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis. 2013;5(3):127-39. DOI: 10.1177/1759720X13483187 PMID: 23858336. [DOI:10.1177/1759720X13483187] [PMID] []
15. Kirschneck C, Wolf M, Reicheneder C, Wahlmann U, Proff P, Roemer P. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats. Eur J Pharmacol. 2014;744:67-75. DOI: 10.1016/j.ejphar.2014.09.039 PMID: 25281203. [DOI:10.1016/j.ejphar.2014.09.039] [PMID]
16. Donneau AF, Reginster JY. Cardiovascular safety of strontium ranelate: real-life assessment in clinical practice. Osteoporos Int. 2014;25(2):397-8. DOI: 10.1007/s00198-013-2583-3 PMID: 24322477. [DOI:10.1007/s00198-013-2583-3] [PMID] []
17. Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, Dehghan MM, Gholami H, Calle Hernández D, et al. Enhanced osteogenesis of gelatin-halloysite nanocomposite scaffold mediated by loading strontium ranelate. Int J Polym Mater Polym Biomater. 2021;70(6):392-402. DOI: 10.1080/00914037.2020.1725754. [DOI:10.1080/00914037.2020.1725754]
18. Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, Dehghan MM, Gholami H, Gonzalez Z, et al. Capability of core-sheath polyvinyl alcohol-polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration. Biomed Mater. 2021;16(2):025009. DOI: 10.1088/1748-605X/abdb07 PMID: 33434897. [DOI:10.1088/1748-605X/abdb07] [PMID]
19. Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv Mat. 2004;16(14):1151-70. DOI: https://doi.org/10.1002/adma.200400719 [DOI:10.1002/adma.200400719.]
20. Chen Y, Zheng Z, Zhou R, Zhang H, Chen C, Xiong Z, et al. Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway. ACS Appl Mater Interfaces. 2019;11(17):15986-97. DOI: 10.1021/acsami.8b22606 PMID: 30945836. [DOI:10.1021/acsami.8b22606] [PMID]
21. Mao Z, Fang Z, Yang Y, Chen X, Wang Y, Kang J, et al. Strontium ranelate-loaded PLGA porous microspheres enhancing the osteogenesis of MC3T3-E1 cells. RSC Advances. 2017;7(40):24607-15. DOI: 10.1039/C7RA01445G. [DOI:10.1039/C7RA01445G]
22. Caverzasio J. Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms. Bone. 2008;42(6):1131-6. DOI: 10.1016/j.bone.2008.02.010 PMID: 18378206. [DOI:10.1016/j.bone.2008.02.010] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb