Volume 8, Issue 1 (Multidisciplinary Cancer Investigation 2024)                   Multidiscip Cancer Investig 2024, 8(1): 0-0 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

pirkani Z, Kamalinejad F, Zare Y, Abdollahi Boraei S B. Advancing Breast Cancer Treatment: The Role of PLA-based Scaffolds in Tumor Microenvironment and Drug Delivery. Multidiscip Cancer Investig 2024; 8 (1)
URL: http://mcijournal.com/article-1-393-en.html
1- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
2- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
3- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
4- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran , be.abdollahi@ut.ac.ir
Abstract:   (467 Views)
This review highlights the crucial role of polylactic acid (PLA)-based scaffolds in developing novel breast cancer treatment strategies. Despite advances in early detection and therapy, breast cancer remains a complex challenge with frequent resistance and relapse. Conventional treatments, while effective, have limitations such as restricted drug distribution and radiation toxicity. PLA scaffolds offer a promising alternative due to their biocompatibility and biodegradability, making them suitable for tissue engineering applications in oncology. The article examines the design and fabrication of PLA scaffolds that are not merely passive structures but play an active role in the therapeutic process. By tailoring their mechanical properties, these scaffolds can mimic the characteristics of actual breast tissue, creating a lifelike environment for studying cancer cell behavior. Furthermore, PLA scaffolds can mimic the tumor microenvironment, offering a three-dimensional representation that allows for a more accurate examination of tumor biology and treatment response. These scaffolds also function as advanced drug delivery systems, releasing therapeutic agents at the tumor site in a controlled manner, reducing systemic side effects, and enhancing drug efficacy. This review connects fundamental research with clinical practice, highlighting the revolutionary potential of PLA-based scaffolds in breast cancer management by mimicking the tumor microenvironment, delivering drugs locally, and enabling personalized treatment strategies.
Full-Text [PDF 747 kb]   (151 Downloads)    
Select article type: Review Article | Subject: Biomedical Engineering and Technologies
Received: 2023/10/4 | Accepted: 2024/02/4 | ePublished: 2024/03/4

References
1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374-403. DOI: 10.1016/j.ejca.2012.12.027 [DOI:10.1016/j.ejca.2012.12.027] [PMID]
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians. 2018;68(1):7-30. DOI: 10.3322/caac.21442 [DOI:10.3322/caac.21442] [PMID]
3. O'Reilly M, Mellotte G, Ryan B, O'Connor A. Gastrointestinal side effects of cancer treatments. Therapeutic advances in chronic disease. 2020;11:2040622320970354. DOI: 10.1177/2040622320970354 [DOI:10.1177/2040622320970354] [PMID] []
4. Nandini D, Rao RS, Hosmani J, Khan S, Patil S, Awan KH. Novel therapies in the management of oral cancer: An update. Disease-a-Month. 2020;66(12):101036. DOI: 10.1016/j.disamonth.2020.101036 [DOI:10.1016/j.disamonth.2020.101036] [PMID]
5. Sachlos E, Czernuszka J. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5(29):39-40. DOI: 10.22203/eCM.v005a03 [DOI:10.22203/eCM.v005a03] [PMID]
6. Mikos AG, Lyman MD, Freed LE, Langer R. Wetting of poly (L-lactic acid) and poly (DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials. 1994;15(1):55-8. DOI: [DOI:10.1016/0142-9612(94)90197-X] [PMID]
7. Murphy WL, Dennis RG, Kileny JL, Mooney DJ. Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds. Tissue Engineering. 2002;8(1):43-52. DOI: 10.1089/107632702753503045 [DOI:10.1089/107632702753503045] [PMID]
8. Oksiuta Z, Jalbrzykowski M, Mystkowska J, Romanczuk E, Osiecki T. Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers. 2020;12(12):2939. DOI: 10.3390/polym12122939 [DOI:10.3390/polym12122939] [PMID] []
9. Carrasco F, Pagès P, Gámez-Pérez J, Santana O, Maspoch ML. Processing of poly (lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and stability. 2010;95(2):116-25. DOI: 10.1016/j.polymdegradstab.2009.11.045 [DOI:10.1016/j.polymdegradstab.2009.11.045]
10. Shetty SD, Shetty N. Investigation of mechanical properties and applications of polylactic acids-A review. Materials Research Express. 2019;6(11):112002. DOI: 10.1088/2053-1591/ab4648 [DOI:10.1088/2053-1591/ab4648]
11. Tsuji H. Poly (lactic acid). Bio‐based plastics: materials and applications. 2013:171-239. DOI: 10.1002/9781118676646.ch8 [DOI:10.1002/9781118676646.ch8]
12. Garlotta D. A literature review of poly (lactic acid). Journal of Polymers and the Environment. 2001;9:63-84. DOI: 10.1023/A:1020200822435 [DOI:10.1023/A:1020200822435]
13. Pillin I, Montrelay N, Bourmaud A, Grohens Y. Effect of thermo-mechanical cycles on the physico-chemical properties of poly (lactic acid). Polymer Degradation and Stability. 2008;93(2):321-8. DOI: 10.1016/j.polymdegradstab.2007.12.005 [DOI:10.1016/j.polymdegradstab.2007.12.005]
14. Khatami F, Baharian A, Akbari-Birgani S, Nikfarjam N. Tubular scaffold made by gelatin/polylactic acid nanofibers for breast ductal carcinoma in situ tumor modeling. Journal of Drug Delivery Science and Technology. 2023;85:104606. DOI: 10.1016/j.jddst.2023.104606 [DOI:10.1016/j.jddst.2023.104606]
15. Samadi S, Moradkhani M, Beheshti H, Irani M, Aliabadi M. Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. International Journal of Biological Macromolecules. 2018;110:416-24. DOI: 10.1016/j.ijbiomac.2017.08.048 [DOI:10.1016/j.ijbiomac.2017.08.048] [PMID]
16. Polonio-Alcalá E, Rabionet M, Gallardo X, Angelats D, Ciurana J, Ruiz-Martínez S, et al. PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers. 2019;11(5):916. DOI: 10.3390/polym11050916 [DOI:10.3390/polym11050916] [PMID] []
17. Wang C, Chien H-S, Yan K-W, Hung C-L, Hung K-L, Tsai S-J, et al. Correlation between processing parameters and microstructure of electrospun poly (D, L-lactic acid) nanofibers. Polymer. 2009;50(25):6100-10. DOI: 10.1016/j.polymer.2009.10.025 [DOI:10.1016/j.polymer.2009.10.025]
18. Mei F, Zhong J, Yang X, Ouyang X, Zhang S, Hu X, et al. Improved biological characteristics of poly (L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules. 2007;8(12):3729-35. DOI: 10.1021/bm7006295 [DOI:10.1021/bm7006295] [PMID]
19. Chew SY, Wen Y, Dzenis Y, Leong KW. The role of electrospinning in the emerging field of nanomedicine. Current pharmaceutical design. 2006;12(36):4751-70. DOI: 10.2174/138161206779026326 [DOI:10.2174/138161206779026326] [PMID] []
20. Farsi M, Asefnejad A, Baharifar H. A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Progress in biomaterials. 2022;11(1):67-77. DOI: 10.1007/s40204-022-00180-z [DOI:10.1007/s40204-022-00180-z] [PMID] []
21. Vonbrunn E, Mueller M, Pichlsberger M, Sundl M, Helmer A, Wallner SA, et al. Electrospun PCL/PLA scaffolds are more suitable carriers of placental mesenchymal stromal cells than collagen/elastin scaffolds and prevent wound contraction in a mouse model of wound healing. Frontiers in Bioengineering and Biotechnology. 2020;8:604123. DOI: 10.3389/fbioe.2020.604123/full [DOI:10.3389/fbioe.2020.604123] [PMID] []
22. Wang X-X, Yu G-F, Zhang J, Yu M, Ramakrishna S, Long Y-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science. 2021;115:100704. DOI: 10.1016/j.pmatsci.2020.100704 [DOI:10.1016/j.pmatsci.2020.100704]
23. Satilmis B. Electrospinning Polymers of Intrinsic Microporosity (PIMs) ultrafine fibers; preparations, applications and future perspectives. Current Opinion in Chemical Engineering. 2022;36:100793. DOI: 10.1016/j.coche.2022.100793 [DOI:10.1016/j.coche.2022.100793]
24. Xu X, Chen X, Xu X, Lu T, Wang X, Yang L, et al. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. Journal of controlled release. 2006;114(3):307-16. DOI: 10.1016/j.jconrel.2006.05.031 [DOI:10.1016/j.jconrel.2006.05.031] [PMID]
25. Qin X. Coaxial electrospinning of nanofibers. Electrospun nanofibers: Elsevier; 2017. p. 41-71. DOI: 10.1016/B978-0-08-100907-9.00003-9 [DOI:10.1016/B978-0-08-100907-9.00003-9] []
26. He CL, Huang ZM, Han XJ. Fabrication of drug‐loaded electrospun aligned fibrous threads for suture applications. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2009;89(1):80-95. DOI: 10.1002/jbm.a.32004 [DOI:10.1002/jbm.a.32004] [PMID]
27. Astm I. ASTM52900-15 standard terminology for additive manufacturing-general principles-terminology. ASTM International, West Conshohocken, PA. 2015;3(4):5. DOI: 10.1520/F3177-21 [DOI:10.1520/F3177-21]
28. Goodridge R, Tuck C, Hague R. Laser sintering of polyamides and other polymers. Progress in Materials science. 2012;57(2):229-67. DOI: 10.1016/j.pmatsci.2011.04.001 [DOI:10.1016/j.pmatsci.2011.04.001]
29. Campbell RI, Hague RJ, Sener B, Wormald PW. The Potential for the Bespoke Industrial Designer. The Design Journal. 2003;6(3):24-34. DOI: 10.2752/146069203789355273 [DOI:10.2752/146069203789355273]
30. Van Puyvelde P. 3D printing: the making of utopia. 2016. [DOI:10.2307/j.ctvgd2vn.35]
31. Kruth JP, Leu M-C, Nakagawa T. Progress in additive manufacturing and rapid prototyping. Cirp Annals. 1998;47(2):525-40. DOI: 10.1016/S0007-8506(07)63240-5 [DOI:10.1016/S0007-8506(07)63240-5]
32. Levy GN, Schindel R, Kruth J-P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP annals. 2003;52(2):589-609. DOI: 10.1016/S0007-8506(07)60206-6 [DOI:10.1016/S0007-8506(07)60206-6]
33. Van den Eynde M, Van Puyvelde P. 3D Printing of Poly(lactic acid). In: Di Lorenzo ML, Androsch R, editors. Industrial Applications of Poly(lactic acid). Cham: Springer International Publishing; 2018. p. 139-58. [DOI:10.1007/12_2017_28]
34. Mei Y, He C, Gao C, Zhu P, Lu G, Li H. 3D-Printed Degradable Anti-Tumor Scaffolds for Controllable Drug Delivery. International journal of bioprinting. 2021;7(4):418. DOI: 10.18063/ijb.v7i4.418 [DOI:10.18063/ijb.v7i4.418] [PMID] []
35. Rijal G, Li W. 3D scaffolds in breast cancer research. Biomaterials. 2016;81:135-56. DOI: 10.1016/j.biomaterials.2015.12.016 [DOI:10.1016/j.biomaterials.2015.12.016] [PMID]
36. Kozin S, Krimker V, Yarmonenko S. Polymodification. Short-term hyperglycemia and local hyperthermia in hypoxiradiotherapy of transplantable solid tumors. Med Radiol;(USSR). 1984;29(9). DOI: 10.1136/bmjdrc-2019-000801 [DOI:10.1136/bmjdrc-2019-000801] [PMID] []
37. Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K. Manufacture and characterisation of porous PLA scaffolds. Procedia Cirp. 2016;49:33-8. DOI: 10.1016/j.procir.2015.07.025 [DOI:10.1016/j.procir.2015.07.025]
38. Jaidev L, Chatterjee K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Materials & Design. 2019;161:44-54. DOI: 10.1016/j.matdes.2018.11.018 [DOI:10.1016/j.matdes.2018.11.018]
39. Bahcecioglu G, Basara G, Ellis BW, Ren X, Zorlutuna P. Breast cancer models: Engineering the tumor microenvironment. Acta biomaterialia. 2020;106:1-21. DOI: 10.1016/j.actbio.2020.02.006 [DOI:10.1016/j.actbio.2020.02.006] [PMID] []
40. Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M, Dolznig H. Modeling human carcinomas: Physiologically relevant 3D models to improve anti-cancer drug development. Advanced Drug Delivery Reviews. 2014;79-80:50-67. DOI: 10.1016/j.addr.2014.10.015 [DOI:10.1016/j.addr.2014.10.015] [PMID]
41. Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Translational Research. 2022;247:117-36. DOI: 10.1016/j.trsl.2021.11.008 [DOI:10.1016/j.trsl.2021.11.008] [PMID]
42. Sahoo SK, Panda AK, Labhasetwar V. Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules. 2005;6(2):1132-9. DOI: 10.1021/bm0492632 [DOI:10.1021/bm0492632] [PMID]
43. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and bioengineering. 2009;103(4):655-63. DOI: 10.1002/bit.22361 [DOI:10.1002/bit.22361] [PMID] []
44. Muncie JM, Weaver VM. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Current topics in developmental biology. 2018;130:1-37. DOI: 10.1016/bs.ctdb.2018.02.002 [DOI:10.1016/bs.ctdb.2018.02.002] [PMID] []
45. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials. 2006;18(11):1345-60. DOI: 10.1002/adma.200501612 [DOI:10.1002/adma.200501612]
46. Amorim S, Reis RL, Pires RA. Biomatrices that mimic the cancer extracellular environment. Biomaterials for 3D Tumor Modeling: Elsevier; 2020. p. 91-106. DOI: 10.1016/B978-0-12-818128-7.00004-6 [DOI:10.1016/B978-0-12-818128-7.00004-6]
47. Biagini G, Senegaglia AC, Pereira T, Berti LF, Marcon BH, Stimamiglio MA. 3D poly (lactic acid) scaffolds promote different behaviors on endothelial progenitors and adipose-derived stromal cells in comparison with standard 2D cultures. Frontiers in Bioengineering and Biotechnology. 2021;9:700862. DOI: 10.3389/fbioe.2021.700862 [DOI:10.3389/fbioe.2021.700862] [PMID] []
48. Chen T, Zhao X, Weng Y. Self-assembled polylactic acid (PLA): Synthesis, properties and biomedical applications. Frontiers in Chemistry. 2023;10:1107620. DOI: 10.3389/fchem.2022.1107620 [DOI:10.3389/fchem.2022.1107620] [PMID] []
49. Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. Journal of Biomedical Science. 2024;31(1):7. DOI: 10.1186/s12929-024-00994-y [DOI:10.1186/s12929-024-00994-y] [PMID] []
50. Unnikrishnan K, Thomas LV, Ram Kumar RM. Advancement of scaffold-based 3D cellular models in cancer tissue engineering: an update. Frontiers in oncology. 2021;11:733652. DOI: 10.3389/fonc.2021.733652 [DOI:10.3389/fonc.2021.733652] [PMID] []
51. Shi H, Yang S, Zeng S, Liu X, Zhang J, Wu T, et al. Enhanced angiogenesis of biodegradable iron-doped octacalcium phosphate/poly (lactic-co-glycolic acid) scaffold for potential cancerous bone regeneration. Applied Materials Today. 2019;15:100-14. DOI: 10.1016/j.apmt.2019.01.002 [DOI:10.1016/j.apmt.2019.01.002]
52. Shah AR, Shah SR, Oh S, Ong JL, Wenke JC, Agrawal CM. Migration of Co-cultured Endothelial Cells and Osteoblasts in Composite Hydroxyapatite/Polylactic Acid Scaffolds. Annals of Biomedical Engineering. 2011;39(10):2501-9. DOI: 10.1007/s10439-011-0344-z [DOI:10.1007/s10439-011-0344-z] [PMID] []
53. Li X, Dai Y, Shen T, Gao C. Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro-inflammatory macrophages in situ. Regenerative Biomaterials. 2017;4(3):139-48. DOI: 10.1093/rb/rbx005 [DOI:10.1093/rb/rbx005] [PMID] []
54. Obayemi JD, Jusu SM, Salifu AA, Ghahremani S, Tadesse M, Uzonwanne VO, et al. Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth. Materials Science and Engineering: C. 2020;112:110794. DOI: 10.1016/j.msec.2020.110794 [DOI:10.1016/j.msec.2020.110794] [PMID]
55. Taib N-AAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MKB, et al. A review on poly lactic acid (PLA) as a biodegradable polymer. Polymer Bulletin. 2023;80(2):1179-213. DOI: 10.1007/s00289-022-04160-y [DOI:10.1007/s00289-022-04160-y]
56. Sikhosana S, Gumede T, Malebo N, Ogundeji A. Poly (Lactic acid) and its composites as functional materials for 3-d scaffolds in biomedical applications: A mini-review of recent trends. eXPRESS Polymer Letters. 2021;15(6):568-80. DOI: 10.3144/expresspolymlett.2021.48 [DOI:10.3144/expresspolymlett.2021.48]
57. Montanheiro TLdA, Schatkoski VM, de Menezes BRC, Pereira RM, Ribas RG. Recent progress on polymer scaffolds production: Methods, main results, advantages and disadvantages. Express Polymer Letters. 2022;16(2):197-219. DOI: 10.3144/expresspolymlett.2022.16 [DOI:10.3144/expresspolymlett.2022.16]
58. Pandey SK, Ghosh S, Maiti P, Haldar C. Therapeutic efficacy and toxicity of tamoxifen loaded PLA nanoparticles for breast cancer. International Journal of Biological Macromolecules. 2015;72:309-19. DOI: 10.1016/j.ijbiomac.2014.08.012 [DOI:10.1016/j.ijbiomac.2014.08.012] [PMID]
59. Abouhasera S, Abu-Madi M, Al-Hamdani M, Abdallah AM. Docetaxel-Loaded Methoxy poly (ethylene glycol)-poly (L-lactic Acid) Nanoparticles for Breast Cancer: Synthesis, Characterization, Method Validation, and Cytotoxicity. 2023. DOI: 10.3390/ph16111600 [DOI:10.3390/ph16111600] [PMID] []
60. Feng C, Yuan X, Chu K, Zhang H, Ji W, Rui M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. International journal of biological macromolecules. 2019;125:700-10. DOI: 10.1016/j.ijbiomac.2018.12.003 [DOI:10.1016/j.ijbiomac.2018.12.003] [PMID]
61. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews. 2016;107:163-75. DOI: 10.1016/j.addr.2016.06.018 [DOI:10.1016/j.addr.2016.06.018] [PMID]
62. Ruan G, Feng S-S. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials. 2003;24(27):5037-44. DOI: 10.1016/S0142-9612(03)00419-8 [DOI:10.1016/S0142-9612(03)00419-8] [PMID]
63. Amani A, Begdelo JM, Yaghoubi H, Motallebinia S. Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. Journal of Drug Delivery Science and Technology. 2019;49:534-46. DOI: 10.1016/j.jddst.2018.12.034 [DOI:10.1016/j.jddst.2018.12.034]
64. Wang L, Zhang D-Z, Wang Y-X. Bioflavonoid Fisetin Loaded α-Tocopherol-Poly(lactic acid)-Based Polymeric Micelles for Enhanced Anticancer Efficacy in Breast Cancers. Pharmaceutical Research. 2017;34(2):453-61. DOI: 10.1007/s11095-016-2077-z [DOI:10.1007/s11095-016-2077-z] [PMID]
65. Allu CB, Poluru S, Shaik S, Subha M, Kashayi CR. Development and In-vitro evaluation of poly (lactic acid) films for controlled release studies of Lapatinib: an anticancer drug. Journal of Applied Pharmaceutical Science. 2014;4(9):022-6. DOI: 10.7324/JAPS.2014.40904
66. Choi I-K, Strauss R, Richter M, Yun C-O, Lieber A. Strategies to Increase Drug Penetration in Solid Tumors. Frontiers in Oncology. 2013;3. DOI: 10.3389/fonc.2013.00193 [DOI:10.3389/fonc.2013.00193] [PMID] []
67. Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioactive Materials. 2024;32:445-72. DOI: 10.1016/j.bioactmat.2023.10.017 [DOI:10.1016/j.bioactmat.2023.10.017] [PMID] []
68. Gavas S, Quazi S, Karpiński TM. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters. 2021;16(1):173. DOI: 10.1186/s11671-021-03628-6 [DOI:10.1186/s11671-021-03628-6] [PMID] []
69. Kuntawala DH, Hussain ZUNM. Significance of Nano-drug Delivery in Cancer Therapy, Application of Nanoparticles in Overcoming Drug Resistance, Targeted Therapy, and Immunotherapy. In: Khan FA, editor. Nano Drug Delivery for Cancer Therapy: Principles and Practices. Singapore: Springer Nature Singapore; 2023. p. 1-24. DOI: 10.1007/978-981-99-6940-1_1 [DOI:10.1007/978-981-99-6940-1_1]
70. Park S-Y, Choi CH, Park JM, Chun M, Han JH, Kim J-i. A Patient-Specific Polylactic Acid Bolus Made by a 3D Printer for Breast Cancer Radiation Therapy. PLOS ONE. 2016;11(12):e0168063. DOI: 10.1371/journal.pone.0168063 [DOI:10.1371/journal.pone.0168063] [PMID] []
71. Deng C, Xu X, Tashi D, Wu Y, Su B, Zhang Q. Co-administration of biocompatible self-assembled polylactic acid-hyaluronic acid block copolymer nanoparticles with tumor-penetrating peptide-iRGD for metastatic breast cancer therapy. Journal of materials chemistry b. 2018;6(19):3163-80. DOI: 10.1039/C8TB00319J [DOI:10.1039/C8TB00319J] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb