1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374-403. DOI: 10.1016/j.ejca.2012.12.027 [
DOI:10.1016/j.ejca.2012.12.027] [
PMID]
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA: a cancer journal for clinicians. 2018;68(1):7-30. DOI: 10.3322/caac.21442 [
DOI:10.3322/caac.21442] [
PMID]
3. O'Reilly M, Mellotte G, Ryan B, O'Connor A. Gastrointestinal side effects of cancer treatments. Therapeutic advances in chronic disease. 2020;11:2040622320970354. DOI: 10.1177/2040622320970354 [
DOI:10.1177/2040622320970354] [
PMID] [
]
4. Nandini D, Rao RS, Hosmani J, Khan S, Patil S, Awan KH. Novel therapies in the management of oral cancer: An update. Disease-a-Month. 2020;66(12):101036. DOI: 10.1016/j.disamonth.2020.101036 [
DOI:10.1016/j.disamonth.2020.101036] [
PMID]
5. Sachlos E, Czernuszka J. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5(29):39-40. DOI: 10.22203/eCM.v005a03 [
DOI:10.22203/eCM.v005a03] [
PMID]
6. Mikos AG, Lyman MD, Freed LE, Langer R. Wetting of poly (L-lactic acid) and poly (DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials. 1994;15(1):55-8. DOI: [
DOI:10.1016/0142-9612(94)90197-X] [
PMID]
7. Murphy WL, Dennis RG, Kileny JL, Mooney DJ. Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds. Tissue Engineering. 2002;8(1):43-52. DOI: 10.1089/107632702753503045 [
DOI:10.1089/107632702753503045] [
PMID]
8. Oksiuta Z, Jalbrzykowski M, Mystkowska J, Romanczuk E, Osiecki T. Mechanical and Thermal Properties of Polylactide (PLA) Composites Modified with Mg, Fe, and Polyethylene (PE) Additives. Polymers. 2020;12(12):2939. DOI: 10.3390/polym12122939 [
DOI:10.3390/polym12122939] [
PMID] [
]
9. Carrasco F, Pagès P, Gámez-Pérez J, Santana O, Maspoch ML. Processing of poly (lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and stability. 2010;95(2):116-25. DOI: 10.1016/j.polymdegradstab.2009.11.045 [
DOI:10.1016/j.polymdegradstab.2009.11.045]
10. Shetty SD, Shetty N. Investigation of mechanical properties and applications of polylactic acids-A review. Materials Research Express. 2019;6(11):112002. DOI: 10.1088/2053-1591/ab4648 [
DOI:10.1088/2053-1591/ab4648]
11. Tsuji H. Poly (lactic acid). Bio‐based plastics: materials and applications. 2013:171-239. DOI: 10.1002/9781118676646.ch8 [
DOI:10.1002/9781118676646.ch8]
12. Garlotta D. A literature review of poly (lactic acid). Journal of Polymers and the Environment. 2001;9:63-84. DOI: 10.1023/A:1020200822435 [
DOI:10.1023/A:1020200822435]
13. Pillin I, Montrelay N, Bourmaud A, Grohens Y. Effect of thermo-mechanical cycles on the physico-chemical properties of poly (lactic acid). Polymer Degradation and Stability. 2008;93(2):321-8. DOI: 10.1016/j.polymdegradstab.2007.12.005 [
DOI:10.1016/j.polymdegradstab.2007.12.005]
14. Khatami F, Baharian A, Akbari-Birgani S, Nikfarjam N. Tubular scaffold made by gelatin/polylactic acid nanofibers for breast ductal carcinoma in situ tumor modeling. Journal of Drug Delivery Science and Technology. 2023;85:104606. DOI: 10.1016/j.jddst.2023.104606 [
DOI:10.1016/j.jddst.2023.104606]
15. Samadi S, Moradkhani M, Beheshti H, Irani M, Aliabadi M. Fabrication of chitosan/poly(lactic acid)/graphene oxide/TiO2 composite nanofibrous scaffolds for sustained delivery of doxorubicin and treatment of lung cancer. International Journal of Biological Macromolecules. 2018;110:416-24. DOI: 10.1016/j.ijbiomac.2017.08.048 [
DOI:10.1016/j.ijbiomac.2017.08.048] [
PMID]
16. Polonio-Alcalá E, Rabionet M, Gallardo X, Angelats D, Ciurana J, Ruiz-Martínez S, et al. PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers. 2019;11(5):916. DOI: 10.3390/polym11050916 [
DOI:10.3390/polym11050916] [
PMID] [
]
17. Wang C, Chien H-S, Yan K-W, Hung C-L, Hung K-L, Tsai S-J, et al. Correlation between processing parameters and microstructure of electrospun poly (D, L-lactic acid) nanofibers. Polymer. 2009;50(25):6100-10. DOI: 10.1016/j.polymer.2009.10.025 [
DOI:10.1016/j.polymer.2009.10.025]
18. Mei F, Zhong J, Yang X, Ouyang X, Zhang S, Hu X, et al. Improved biological characteristics of poly (L-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules. 2007;8(12):3729-35. DOI: 10.1021/bm7006295 [
DOI:10.1021/bm7006295] [
PMID]
19. Chew SY, Wen Y, Dzenis Y, Leong KW. The role of electrospinning in the emerging field of nanomedicine. Current pharmaceutical design. 2006;12(36):4751-70. DOI: 10.2174/138161206779026326 [
DOI:10.2174/138161206779026326] [
PMID] [
]
20. Farsi M, Asefnejad A, Baharifar H. A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Progress in biomaterials. 2022;11(1):67-77. DOI: 10.1007/s40204-022-00180-z [
DOI:10.1007/s40204-022-00180-z] [
PMID] [
]
21. Vonbrunn E, Mueller M, Pichlsberger M, Sundl M, Helmer A, Wallner SA, et al. Electrospun PCL/PLA scaffolds are more suitable carriers of placental mesenchymal stromal cells than collagen/elastin scaffolds and prevent wound contraction in a mouse model of wound healing. Frontiers in Bioengineering and Biotechnology. 2020;8:604123. DOI: 10.3389/fbioe.2020.604123/full [
DOI:10.3389/fbioe.2020.604123] [
PMID] [
]
22. Wang X-X, Yu G-F, Zhang J, Yu M, Ramakrishna S, Long Y-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science. 2021;115:100704. DOI: 10.1016/j.pmatsci.2020.100704 [
DOI:10.1016/j.pmatsci.2020.100704]
23. Satilmis B. Electrospinning Polymers of Intrinsic Microporosity (PIMs) ultrafine fibers; preparations, applications and future perspectives. Current Opinion in Chemical Engineering. 2022;36:100793. DOI: 10.1016/j.coche.2022.100793 [
DOI:10.1016/j.coche.2022.100793]
24. Xu X, Chen X, Xu X, Lu T, Wang X, Yang L, et al. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. Journal of controlled release. 2006;114(3):307-16. DOI: 10.1016/j.jconrel.2006.05.031 [
DOI:10.1016/j.jconrel.2006.05.031] [
PMID]
25. Qin X. Coaxial electrospinning of nanofibers. Electrospun nanofibers: Elsevier; 2017. p. 41-71. DOI: 10.1016/B978-0-08-100907-9.00003-9 [
DOI:10.1016/B978-0-08-100907-9.00003-9] [
]
26. He CL, Huang ZM, Han XJ. Fabrication of drug‐loaded electrospun aligned fibrous threads for suture applications. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2009;89(1):80-95. DOI: 10.1002/jbm.a.32004 [
DOI:10.1002/jbm.a.32004] [
PMID]
27. Astm I. ASTM52900-15 standard terminology for additive manufacturing-general principles-terminology. ASTM International, West Conshohocken, PA. 2015;3(4):5. DOI: 10.1520/F3177-21 [
DOI:10.1520/F3177-21]
28. Goodridge R, Tuck C, Hague R. Laser sintering of polyamides and other polymers. Progress in Materials science. 2012;57(2):229-67. DOI: 10.1016/j.pmatsci.2011.04.001 [
DOI:10.1016/j.pmatsci.2011.04.001]
29. Campbell RI, Hague RJ, Sener B, Wormald PW. The Potential for the Bespoke Industrial Designer. The Design Journal. 2003;6(3):24-34. DOI: 10.2752/146069203789355273 [
DOI:10.2752/146069203789355273]
30. Van Puyvelde P. 3D printing: the making of utopia. 2016. [
DOI:10.2307/j.ctvgd2vn.35]
31. Kruth JP, Leu M-C, Nakagawa T. Progress in additive manufacturing and rapid prototyping. Cirp Annals. 1998;47(2):525-40. DOI: 10.1016/S0007-8506(07)63240-5 [
DOI:10.1016/S0007-8506(07)63240-5]
32. Levy GN, Schindel R, Kruth J-P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP annals. 2003;52(2):589-609. DOI: 10.1016/S0007-8506(07)60206-6 [
DOI:10.1016/S0007-8506(07)60206-6]
33. Van den Eynde M, Van Puyvelde P. 3D Printing of Poly(lactic acid). In: Di Lorenzo ML, Androsch R, editors. Industrial Applications of Poly(lactic acid). Cham: Springer International Publishing; 2018. p. 139-58. [
DOI:10.1007/12_2017_28]
34. Mei Y, He C, Gao C, Zhu P, Lu G, Li H. 3D-Printed Degradable Anti-Tumor Scaffolds for Controllable Drug Delivery. International journal of bioprinting. 2021;7(4):418. DOI: 10.18063/ijb.v7i4.418 [
DOI:10.18063/ijb.v7i4.418] [
PMID] [
]
35. Rijal G, Li W. 3D scaffolds in breast cancer research. Biomaterials. 2016;81:135-56. DOI: 10.1016/j.biomaterials.2015.12.016 [
DOI:10.1016/j.biomaterials.2015.12.016] [
PMID]
36. Kozin S, Krimker V, Yarmonenko S. Polymodification. Short-term hyperglycemia and local hyperthermia in hypoxiradiotherapy of transplantable solid tumors. Med Radiol;(USSR). 1984;29(9). DOI: 10.1136/bmjdrc-2019-000801 [
DOI:10.1136/bmjdrc-2019-000801] [
PMID] [
]
37. Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K. Manufacture and characterisation of porous PLA scaffolds. Procedia Cirp. 2016;49:33-8. DOI: 10.1016/j.procir.2015.07.025 [
DOI:10.1016/j.procir.2015.07.025]
38. Jaidev L, Chatterjee K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Materials & Design. 2019;161:44-54. DOI: 10.1016/j.matdes.2018.11.018 [
DOI:10.1016/j.matdes.2018.11.018]
39. Bahcecioglu G, Basara G, Ellis BW, Ren X, Zorlutuna P. Breast cancer models: Engineering the tumor microenvironment. Acta biomaterialia. 2020;106:1-21. DOI: 10.1016/j.actbio.2020.02.006 [
DOI:10.1016/j.actbio.2020.02.006] [
PMID] [
]
40. Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M, Dolznig H. Modeling human carcinomas: Physiologically relevant 3D models to improve anti-cancer drug development. Advanced Drug Delivery Reviews. 2014;79-80:50-67. DOI: 10.1016/j.addr.2014.10.015 [
DOI:10.1016/j.addr.2014.10.015] [
PMID]
41. Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Translational Research. 2022;247:117-36. DOI: 10.1016/j.trsl.2021.11.008 [
DOI:10.1016/j.trsl.2021.11.008] [
PMID]
42. Sahoo SK, Panda AK, Labhasetwar V. Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules. 2005;6(2):1132-9. DOI: 10.1021/bm0492632 [
DOI:10.1021/bm0492632] [
PMID]
43. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and bioengineering. 2009;103(4):655-63. DOI: 10.1002/bit.22361 [
DOI:10.1002/bit.22361] [
PMID] [
]
44. Muncie JM, Weaver VM. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Current topics in developmental biology. 2018;130:1-37. DOI: 10.1016/bs.ctdb.2018.02.002 [
DOI:10.1016/bs.ctdb.2018.02.002] [
PMID] [
]
45. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials. 2006;18(11):1345-60. DOI: 10.1002/adma.200501612 [
DOI:10.1002/adma.200501612]
46. Amorim S, Reis RL, Pires RA. Biomatrices that mimic the cancer extracellular environment. Biomaterials for 3D Tumor Modeling: Elsevier; 2020. p. 91-106. DOI: 10.1016/B978-0-12-818128-7.00004-6 [
DOI:10.1016/B978-0-12-818128-7.00004-6]
47. Biagini G, Senegaglia AC, Pereira T, Berti LF, Marcon BH, Stimamiglio MA. 3D poly (lactic acid) scaffolds promote different behaviors on endothelial progenitors and adipose-derived stromal cells in comparison with standard 2D cultures. Frontiers in Bioengineering and Biotechnology. 2021;9:700862. DOI: 10.3389/fbioe.2021.700862 [
DOI:10.3389/fbioe.2021.700862] [
PMID] [
]
48. Chen T, Zhao X, Weng Y. Self-assembled polylactic acid (PLA): Synthesis, properties and biomedical applications. Frontiers in Chemistry. 2023;10:1107620. DOI: 10.3389/fchem.2022.1107620 [
DOI:10.3389/fchem.2022.1107620] [
PMID] [
]
49. Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. Journal of Biomedical Science. 2024;31(1):7. DOI: 10.1186/s12929-024-00994-y [
DOI:10.1186/s12929-024-00994-y] [
PMID] [
]
50. Unnikrishnan K, Thomas LV, Ram Kumar RM. Advancement of scaffold-based 3D cellular models in cancer tissue engineering: an update. Frontiers in oncology. 2021;11:733652. DOI: 10.3389/fonc.2021.733652 [
DOI:10.3389/fonc.2021.733652] [
PMID] [
]
51. Shi H, Yang S, Zeng S, Liu X, Zhang J, Wu T, et al. Enhanced angiogenesis of biodegradable iron-doped octacalcium phosphate/poly (lactic-co-glycolic acid) scaffold for potential cancerous bone regeneration. Applied Materials Today. 2019;15:100-14. DOI: 10.1016/j.apmt.2019.01.002 [
DOI:10.1016/j.apmt.2019.01.002]
52. Shah AR, Shah SR, Oh S, Ong JL, Wenke JC, Agrawal CM. Migration of Co-cultured Endothelial Cells and Osteoblasts in Composite Hydroxyapatite/Polylactic Acid Scaffolds. Annals of Biomedical Engineering. 2011;39(10):2501-9. DOI: 10.1007/s10439-011-0344-z [
DOI:10.1007/s10439-011-0344-z] [
PMID] [
]
53. Li X, Dai Y, Shen T, Gao C. Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro-inflammatory macrophages in situ. Regenerative Biomaterials. 2017;4(3):139-48. DOI: 10.1093/rb/rbx005 [
DOI:10.1093/rb/rbx005] [
PMID] [
]
54. Obayemi JD, Jusu SM, Salifu AA, Ghahremani S, Tadesse M, Uzonwanne VO, et al. Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth. Materials Science and Engineering: C. 2020;112:110794. DOI: 10.1016/j.msec.2020.110794 [
DOI:10.1016/j.msec.2020.110794] [
PMID]
55. Taib N-AAB, Rahman MR, Huda D, Kuok KK, Hamdan S, Bakri MKB, et al. A review on poly lactic acid (PLA) as a biodegradable polymer. Polymer Bulletin. 2023;80(2):1179-213. DOI: 10.1007/s00289-022-04160-y [
DOI:10.1007/s00289-022-04160-y]
56. Sikhosana S, Gumede T, Malebo N, Ogundeji A. Poly (Lactic acid) and its composites as functional materials for 3-d scaffolds in biomedical applications: A mini-review of recent trends. eXPRESS Polymer Letters. 2021;15(6):568-80. DOI: 10.3144/expresspolymlett.2021.48 [
DOI:10.3144/expresspolymlett.2021.48]
57. Montanheiro TLdA, Schatkoski VM, de Menezes BRC, Pereira RM, Ribas RG. Recent progress on polymer scaffolds production: Methods, main results, advantages and disadvantages. Express Polymer Letters. 2022;16(2):197-219. DOI: 10.3144/expresspolymlett.2022.16 [
DOI:10.3144/expresspolymlett.2022.16]
58. Pandey SK, Ghosh S, Maiti P, Haldar C. Therapeutic efficacy and toxicity of tamoxifen loaded PLA nanoparticles for breast cancer. International Journal of Biological Macromolecules. 2015;72:309-19. DOI: 10.1016/j.ijbiomac.2014.08.012 [
DOI:10.1016/j.ijbiomac.2014.08.012] [
PMID]
59. Abouhasera S, Abu-Madi M, Al-Hamdani M, Abdallah AM. Docetaxel-Loaded Methoxy poly (ethylene glycol)-poly (L-lactic Acid) Nanoparticles for Breast Cancer: Synthesis, Characterization, Method Validation, and Cytotoxicity. 2023. DOI: 10.3390/ph16111600 [
DOI:10.3390/ph16111600] [
PMID] [
]
60. Feng C, Yuan X, Chu K, Zhang H, Ji W, Rui M. Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. International journal of biological macromolecules. 2019;125:700-10. DOI: 10.1016/j.ijbiomac.2018.12.003 [
DOI:10.1016/j.ijbiomac.2018.12.003] [
PMID]
61. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews. 2016;107:163-75. DOI: 10.1016/j.addr.2016.06.018 [
DOI:10.1016/j.addr.2016.06.018] [
PMID]
62. Ruan G, Feng S-S. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Biomaterials. 2003;24(27):5037-44. DOI: 10.1016/S0142-9612(03)00419-8 [
DOI:10.1016/S0142-9612(03)00419-8] [
PMID]
63. Amani A, Begdelo JM, Yaghoubi H, Motallebinia S. Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. Journal of Drug Delivery Science and Technology. 2019;49:534-46. DOI: 10.1016/j.jddst.2018.12.034 [
DOI:10.1016/j.jddst.2018.12.034]
64. Wang L, Zhang D-Z, Wang Y-X. Bioflavonoid Fisetin Loaded α-Tocopherol-Poly(lactic acid)-Based Polymeric Micelles for Enhanced Anticancer Efficacy in Breast Cancers. Pharmaceutical Research. 2017;34(2):453-61. DOI: 10.1007/s11095-016-2077-z [
DOI:10.1007/s11095-016-2077-z] [
PMID]
65. Allu CB, Poluru S, Shaik S, Subha M, Kashayi CR. Development and In-vitro evaluation of poly (lactic acid) films for controlled release studies of Lapatinib: an anticancer drug. Journal of Applied Pharmaceutical Science. 2014;4(9):022-6. DOI: 10.7324/JAPS.2014.40904
66. Choi I-K, Strauss R, Richter M, Yun C-O, Lieber A. Strategies to Increase Drug Penetration in Solid Tumors. Frontiers in Oncology. 2013;3. DOI: 10.3389/fonc.2013.00193 [
DOI:10.3389/fonc.2013.00193] [
PMID] [
]
67. Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioactive Materials. 2024;32:445-72. DOI: 10.1016/j.bioactmat.2023.10.017 [
DOI:10.1016/j.bioactmat.2023.10.017] [
PMID] [
]
68. Gavas S, Quazi S, Karpiński TM. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters. 2021;16(1):173. DOI: 10.1186/s11671-021-03628-6 [
DOI:10.1186/s11671-021-03628-6] [
PMID] [
]
69. Kuntawala DH, Hussain ZUNM. Significance of Nano-drug Delivery in Cancer Therapy, Application of Nanoparticles in Overcoming Drug Resistance, Targeted Therapy, and Immunotherapy. In: Khan FA, editor. Nano Drug Delivery for Cancer Therapy: Principles and Practices. Singapore: Springer Nature Singapore; 2023. p. 1-24. DOI: 10.1007/978-981-99-6940-1_1 [
DOI:10.1007/978-981-99-6940-1_1]
70. Park S-Y, Choi CH, Park JM, Chun M, Han JH, Kim J-i. A Patient-Specific Polylactic Acid Bolus Made by a 3D Printer for Breast Cancer Radiation Therapy. PLOS ONE. 2016;11(12):e0168063. DOI: 10.1371/journal.pone.0168063 [
DOI:10.1371/journal.pone.0168063] [
PMID] [
]
71. Deng C, Xu X, Tashi D, Wu Y, Su B, Zhang Q. Co-administration of biocompatible self-assembled polylactic acid-hyaluronic acid block copolymer nanoparticles with tumor-penetrating peptide-iRGD for metastatic breast cancer therapy. Journal of materials chemistry b. 2018;6(19):3163-80. DOI: 10.1039/C8TB00319J [
DOI:10.1039/C8TB00319J] [
PMID]