Volume 8, Issue 2 (Multidisciplinary Cancer Investigation 2024)                   Multidiscip Cancer Investig 2024, 8(2): 1-12 | Back to browse issues page

Ethics code: Prevention, Early Detection and Screening


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kordkatouli M, Mohammadi bondarkhilli S A, Sateei A, Dulskas A. Potential Roles and Mechanisms of Avena Sativa in Cancer Prevention. Multidiscip Cancer Investig 2024; 8 (2) :1-12
URL: http://mcijournal.com/article-1-401-en.html
1- Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran
2- Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran , sambondar2@gmail.com
3- Department of Abdominal and General Surgery and Oncology, National Cancer Institute, Vilnius, Lithuania
Abstract:   (782 Views)
The protective effects of dietary fiber are attributed to several mechanisms: it regulates bowel movements by increasing stool bulk and speeding up gastrointestinal transit, which minimizes the contact time between carcinogens and the intestinal lining, thus reducing cancer risk; it dilutes fecal carcinogens due to increased stool volume, lessening their interaction with the colonic epithelium; the fermentation of fiber by gut microbiota produces short-chain fatty acids (SCFAs) like butyrate, which protect against cancer by serving as an energy source for colonocytes, maintaining mucosal integrity, and exhibiting anti-inflammatory properties; dietary fiber also modulates gut microbiota, encouraging the growth of beneficial bacteria that can outcompete harmful, carcinogen-producing bacteria; it enhances immune function by influencing gut immune cells, aiding in the removal of cancer cells and preventing inflammation, a known cancer risk factor; fiber binds to bile acids, leading to their excretion and preventing the formation of more carcinogenic secondary bile acids implicated in colorectal cancer development; and SCFAs, particularly butyrate, affect cell proliferation and differentiation, inducing apoptosis in cancer cells and inhibiting the growth of neoplastic cells. Flavonoids, polyphenolic compounds in Avena Sativa, display antioxidant, anti-inflammatory, and antiproliferative activities, modulating enzyme function, inhibiting cell growth, and inducing apoptosis in cancer cells. Avenanthramides and other anti-inflammatory compounds in Avena Sativa modulate multiple inflammatory pathways, including inhibiting the activity of enzymes like COX-2 and reducing the production of pro-inflammatory cytokines, potentially lowering the risk of chronic inflammation-related cancers.
Full-Text [PDF 477 kb]   (202 Downloads)    
Select article type: Review Article | Subject: Prevention, Early Detection and Screening
Received: 2024/07/26 | Accepted: 2024/08/29 | ePublished: 2024/12/30

References
1. Meydani M. Potential health benefits of avenanthramides of Avena Sativa. Nutrition reviews. 2009;67(12):731-5. DOI: 10.1111/j.1753-4887.2009.00256.x. [DOI:10.1111/j.1753-4887.2009.00256.x] [PMID]
2. George S, Abrahamse H. Redox Potential of Antioxidants in Cancer Progression and Prevention. Antioxidants. 2020;9. DOI: 10.3390/antiox9111156. [DOI:10.3390/antiox9111156] [PMID] []
3. Aldubayan M, Elgharabawy R, Ahmed A, Tousson E. Antineoplastic Activity and Curative Role of Avenanthramides against the Growth of Ehrlich Solid Tumors in Mice. Oxidative Medicine and Cellular Longevity. 2019. DOI: 10.1155/2019/5162687. [DOI:10.1155/2019/5162687] [PMID] []
4. Wang P, Chen H, Zhu Y, McBride J, Fu J, Sang S. Oat avenanthramide-C (2c) is biotransformed by mice and the human microbiota into bioactive metabolites. The Journal of nutrition. 2015;145(2):239-45. DOI: 10.3945/jn.114.206508. [DOI:10.3945/jn.114.206508] [PMID]
5. Damazo-Lima M, Rosas-Pérez G, Reynoso-Camacho R, Pérez-Ramírez I, Rocha‐Guzmán N, Ríos E, et al. Chemopreventive Effect of the Germinated Oat and Its Phenolic-AVA Extract in Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) Model of Colon Carcinogenesis in Mice. Foods. 2020;9. DOI: 10.3390/foods9020169. [DOI:10.3390/foods9020169] [PMID] []
6. Turrini E, Maffei F, Milelli A, Calcabrini C, Fimognari, C. Overview of the Anticancer Profile of Avenanthramides from Oat. International Journal of Molecular Sciences. 2019;20. DOI: 10.3390/ijms20184536. [DOI:10.3390/ijms20184536] [PMID] []
7. Borek C. Dietary Antioxidants and Human Cancer. Integrative Cancer Therapies. 2004;3:333-41. DOI: 10.1177/1534735404270578. [DOI:10.1177/1534735404270578] [PMID]
8. Chen C, Milbury P, Collins F, Blumberg J. Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from Avena Sativa. The Journal of nutrition. 2007;137(6):1375-82. DOI: 10.1093/JN/137.6.1375. [DOI:10.1093/jn/137.6.1375] [PMID]
9. Wang H, Hung C, Hsu J, Yang M, Wang S, Wang C. Inhibitory effect of whole oat on aberrant crypt foci formation and colon tumor growth in ICR and BALB/c mice. Journal of Cereal Science. 2011;53:73-7. DOI: 10.1016/J.JCS.2010.09.009. [DOI:10.1016/j.jcs.2010.09.009]
10. Stāka A, Bodnieks E, Puķīti, A. Impact of Oat-Based Products on Human Gastrointestinal Tract. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 2015;69:145-51. DOI: 10.1515/prolas-2015-0021. [DOI:10.1515/prolas-2015-0021]
11. Boffetta P, Thies F, Kris-Etherton P. Epidemiological studies of Avena Sativa consumption and risk of cancer and overall mortality. British Journal of Nutrition. 2014;112:S14-S18. DOI: 10.1017/S0007114514002268. [DOI:10.1017/S0007114514002268] [PMID]
12. Dioum E, Schneider K, Vigerust D, Cox B, Chu Y, Zachwieja J, et al. Avena Sativa Lower Age-Related Systemic Chronic Inflammation (iAge) in Adults at Risk for Cardiovascular Disease. Nutrients. 2022;14. DOI: 10.3390/nu14214471. [DOI:10.3390/nu14214471] [PMID] []
13. Martínez-Villaluenga C, Peñas E. Health benefits of oat: current evidence and molecular mechanisms. Current opinion in food science. 2017;14:26-31. DOI: 10.1016/J.COFS.2017.01.004. [DOI:10.1016/j.cofs.2017.01.004]
14. Kim I, Hwang C, Yang W, Kim C. Multiple Antioxidative and Bioactive Molecules of Avena Sativa (Avena sativa L.) in Human Health. Antioxidants 2021;10. DOI: 10.3390/antiox10091454. [DOI:10.3390/antiox10091454] [PMID] []
15. Wu W, Tang Y, Yang J, Idehen E, Sang S. Avenanthramide Aglycones and Glucosides in Oat Bran: Chemical Profile, Levels in Commercial Oat Products, and Cytotoxicity to Human Colon Cancer Cells.. Journal of agricultural and food chemistry. 2018;66(30):8005-14 . DOI: 10.1021/acs.jafc.8b02767. [DOI:10.1021/acs.jafc.8b02767] [PMID]
16. Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. Journal of agricultural and food chemistry. 2022. DOI: 10.1021/acs.jafc.2c06518. [DOI:10.1021/acs.jafc.2c06518] [PMID]
17. Meydani M. Potential health benefits of avenanthramides of Avena Sativa. Nutrition reviews. 2009;67(12):731-5. DOI: 10.1111/j.1753-4887.2009.00256.x. [DOI:10.1111/j.1753-4887.2009.00256.x] [PMID]
18. Alfieri M, Redaelli R. Oat phenolic content and total antioxidant capacity during grain development. Journal of Cereal Science. 2015;65:39-42. DOI: 10.1016/J.JCS.2015.05.013. [DOI:10.1016/j.jcs.2015.05.013]
19. Daniels D, Martin H. Isolation of a New Antioxidant from Avena Sativa . Nature. 1961;191:1302-2. DOI: 10.1038/1911302A0. [DOI:10.1038/1911302a0] [PMID]
20. Mohammadi Bondarkhilli SA, Kordkatouli M, Maroufi M. Oncogenic and anticancer roles of miRNAs in colorectal cancer: A review. Micro Nano Bio Aspects. 2024;3:14-22. doi: 10.22034/mnba.2024.429195.1053.
21. Li Y, Chen X, Kwan T, Loh Y, Singer J, Liu Y, et al. Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid-Mediated Activation of G Protein-Coupled Receptors GPR43 and GPR109A. Journal of the American Society of Nephrology: JASN. 2020. DOI: 10.1681/ASN.2019101029. [DOI:10.1681/ASN.2019101029] [PMID] []
22. Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe M, et al. Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health. Cell host & microbe. 2018;23(1):41-53. DOI: 10.1016/j.chom.2017.11.003. [DOI:10.1016/j.chom.2017.11.003] [PMID] []
23. Donohoe D, Holley D, Collins L, Montgomery S, Whitmore A, Hillhouse A, et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer discovery. 2014;4(12):1387-97 . DOI: 10.1158/2159-8290.CD-14-0501. [DOI:10.1158/2159-8290.CD-14-0501] [PMID] []
24. Paudel D, Dhungana B, Caffé M, Krishnan P. A Review of Health-Beneficial Properties of Avena Sativa . Foods. 2021;10. DOI: 10.3390/foods10112591. [DOI:10.3390/foods10112591] [PMID] []
25. Turrini E, Maffei F, Milelli A, Calcabrini C, Fimognari C. Overview of the Anticancer Profile of Avenanthramides from Oat. International Journal of Molecular Sciences. 2019;20. DOI: 10.3390/ijms20184536. [DOI:10.3390/ijms20184536] [PMID] []
26. Gangopadhyay N, Hossain M, Rai D, Brunton N. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules. 2015;20:10884-909. DOI: 10.3390/molecules200610884. [DOI:10.3390/molecules200610884] [PMID] []
27. Khan I, Huang G, Li X, Liao W, Leong W, Xia W, et al. Mushroom polysaccharides and jiaogulan saponins exert cancer preventive effects by shaping the gut microbiota and microenvironment in ApcMin/+ mice.. Pharmacological research. 2019;104448. DOI: 10.1016/j.phrs.2019.104448. [DOI:10.1016/j.phrs.2019.104448] [PMID]
28. Espley R, Butts C, Laing W, Martell S, Smith H, McGhie T, et al. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice.. The Journal of nutrition. 2014;144(2):146-54. DOI: 10.3945/jn.113.182659. [DOI:10.3945/jn.113.182659] [PMID]
29. Chan K, Ismail M, Esa N, Alitheen N, Imam M, Ooi D, et al. Defatted Kenaf (Hibiscus cannabinus L.) Seed Meal and Its Phenolic-Saponin-Rich Extract Protect Hypercholesterolemic Rats against Oxidative Stress and Systemic Inflammation via Transcriptional Modulation of Hepatic Antioxidant Genes. Oxidative Medicine and Cellular Longevity. 2018. DOI: 10.1155/2018/6742571. [DOI:10.1155/2018/6742571] [PMID] []
30. Huang G, Wang Z, Wu G, Zhang R, Dong L, Huang F, et al. Lychee (Litchi chinensis Sonn.) Pulp Phenolics Activate the Short-Chain Fatty Acid-Free Fatty Acid Receptor Anti-inflammatory Pathway by Regulating Microbiota and Mitigate Intestinal Barrier Damage in Dextran Sulfate Sodium-Induced Colitis in Mice. Journal of agricultural and food chemistry. 2021. DOI: 10.1021/acs.jafc.0c07407. [DOI:10.1021/acs.jafc.0c07407] [PMID]
31. Khan M, Karima G, Khan M, Shin J, Kim J. Therapeutic Effects of Saponins for the Prevention and Treatment of Cancer by Ameliorating Inflammation and Angiogenesis and Inducing Antioxidant and Apoptotic Effects in Human Cells. International Journal of Molecular Sciences. 2022;23. DOI: 10.3390/ijms231810665. [DOI:10.3390/ijms231810665] [PMID] []
32. Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. Journal of agricultural and food chemistry. 2022. DOI: 10.1021/acs.jafc.2c06518. [DOI:10.1021/acs.jafc.2c06518] [PMID]
33. Sur R, Nigam A, Grote D, Liebel F, Southall M. Avenanthramides, polyphenols from Avena Sativa, exhibit anti-inflammatory and anti-itch activity. Archives of Dermatological Research. 2008;300:569-74. DOI: 10.1007/s00403-008-0858-x. [DOI:10.1007/s00403-008-0858-x] [PMID]
34. Kim S, Jung C, Anh N, Kim S, Park S, Kwon S, et al. Effects of Avena Sativa (Avena sativa L.) on Inflammation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Frontiers in Nutrition. 2021;8. DOI: 10.3389/fnut.2021.722866. [DOI:10.3389/fnut.2021.722866] [PMID] []
35. Daou C, Zhang H. Oat Beta‐Glucan: Its Role in Health Promotion and Prevention of Diseases. Comprehensive Reviews in Food Science and Food Safety. 2012;11:355-65. DOI: 10.1111/J.1541-4337.2012.00189.X. [DOI:10.1111/j.1541-4337.2012.00189.x]
36. Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, et al. Physiological functionalities and mechanisms of β-glucans. Trends in Food Science & Technology. 2019. DOI: 10.1016/J.TIFS.2019.03.023. [DOI:10.1016/j.tifs.2019.03.023]
37. Jayachandran M, Chen J, Chung S, Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health.. The Journal of nutritional biochemistry. 2018;61:101-10. DOI: 10.1016/j.jnutbio.2018.06.010. [DOI:10.1016/j.jnutbio.2018.06.010] [PMID]
38. Volman J, Ramakers J, Plat J. Dietary modulation of immune function by β-glucans. Physiology & Behavior. 2008;94:276-84. DOI: 10.1016/j.physbeh.2007.11.045. [DOI:10.1016/j.physbeh.2007.11.045] [PMID]
39. Sang S, Landberg R, Chu Y. Whole grain Avena Sativa , more than just a fiber: Role of unique phytochemicals. Molecular Nutrition & Food Research. 2017;61. DOI: 10.1002/mnfr.201600715. [DOI:10.1002/mnfr.201600715] [PMID]
40. Gangopadhyay N, Hossain M, Rai D, Brunton N. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules. 20115;20:10884-909. DOI: 10.3390/molecules200610884. [DOI:10.3390/molecules200610884] [PMID] []
41. Trabalzini L, Ercoli J, Trezza A, Schiavo I, Macrì G, Moglia A, et al. Pharmacological and In Silico Analysis of Oat Avenanthramides as EGFR Inhibitors: Effects on EGF-Induced Lung Cancer Cell Growth and Migration. International Journal of Molecular Sciences. 2022;23. DOI: 10.3390/ijms23158534. [DOI:10.3390/ijms23158534] [PMID] []
42. Paudel D, Dhungana B, Caffé M, Krishnan P. A Review of Health-Beneficial Properties of Avena Sativa . Foods. 2021;10. DOI: 10.3390/foods10112591. [DOI:10.3390/foods10112591] [PMID] []
43. Jayachandran M, Chen J, Chung S, Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. The Journal of nutritional biochemistry. 2018;61:101-10 . DOI: 10.1016/j.jnutbio.2018.06.010. [DOI:10.1016/j.jnutbio.2018.06.010] [PMID]
44. Daou C, Zhang H. Oat Beta‐Glucan: Its Role in Health Promotion and Prevention of Diseases. Comprehensive Reviews in Food Science and Food Safety. 2012;11,355-65. DOI: 10.1111/J.1541-4337.2012.00189.X. [DOI:10.1111/j.1541-4337.2012.00189.x]
45. Basu P, Maier C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives.. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;107:1648-66. DOI: 10.1016/j.biopha.2018.08.100. [DOI:10.1016/j.biopha.2018.08.100] [PMID]
46. Hedelin M, Löf M, Andersson T, Adlercreutz H, Weiderpass E. Dietary Phytoestrogens and the Risk of Ovarian Cancer in the Women's Lifestyle and Health Cohort Study. Cancer Epidemiology, Biomarkers & Prevention. 2011;20:308-17. DOI: 10.1158/1055-9965.EPI-10-0752. [DOI:10.1158/1055-9965.EPI-10-0752] [PMID]
47. Paudel D, Dhungana B, Caffé M, Krishnan P. A Review of Health-Beneficial Properties of Avena Sativa. Foods. 2021;10. DOI: 10.3390/foods10112591. [DOI:10.3390/foods10112591] [PMID] []
48. Martínez-Villaluenga C, Peñas E. Health benefits of oat: current evidence and molecular mechanisms. Current opinion in food science. 2017;14:26-31. DOI: 10.1016/J.COFS.2017.01.004. [DOI:10.1016/j.cofs.2017.01.004]
49. Mälkki Y, Virtanen E. Gastrointestinal Effects of Oat Bran and Oat Gum: A Review. Lwt - Food Science and Technology. 2001;34:337-47. DOI: 10.1006/FSTL.2001.0795. [DOI:10.1006/fstl.2001.0795]
50. Xu D, Feng M, Chu Y, Wang S, Shete V, Tuohy K, et al. The Prebiotic Effects of Avena Sativa on Blood Lipids, Gut Microbiota, and Short-Chain Fatty Acids in Mildly Hypercholesterolemic Subjects Compared With Rice: A Randomized, Controlled Trial. Frontiers in Immunology. 2021;12. DOI: 10.3389/fimmu.2021.787797. [DOI:10.3389/fimmu.2021.787797] [PMID] []
51. Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. Journal of agricultural and food chemistry. 2022. DOI: 10.1021/acs.jafc.2c06518. [DOI:10.1021/acs.jafc.2c06518] [PMID]
52. Paudel D, Dhungana B, Caffé M, Krishnan P. A Review of Health-Beneficial Properties of Avena Sativa . Foods. 2021;10. DOI: 10.3390/foods10112591. [DOI:10.3390/foods10112591] [PMID] []
53. Paudel D, Dhungana B, Caffé M, Krishnan P. A Review of Health-Beneficial Properties of Avena Sativa. Foods. 2021;10. DOI: 10.3390/foods10112591. [DOI:10.3390/foods10112591] [PMID] []
54. Thies F, Masson L, Boffetta P, Kris-Etherton P. Avena Sativa and bowel disease: a systematic literature review. British Journal of Nutrition. 2014;112:S31-S43. DOI: 10.1017/S0007114514002293. [DOI:10.1017/S0007114514002293] [PMID]
55. Chu Y, Wise M, Gulvady A, Chang T, Kendra D, Klinken B, et al. In vitro antioxidant capacity and anti-inflammatory activity of seven common Avena Sativa. Food chemistry. 2013;139(1-4):426-31. DOI: 10.1016/j.foodchem.2013.01.104. [DOI:10.1016/j.foodchem.2013.01.104] [PMID]
56. Guo W, Kong E, Meydani M. Dietary Polyphenols, Inflammation, and Cancer. Nutrition and Cancer. 2009;61:807-10. DOI: 10.1080/01635580903285098. [DOI:10.1080/01635580903285098] [PMID]
57. Thies F, Masson L, Boffetta P, Kris-Etherton P. Avena Sativa and bowel disease: a systematic literature review. British Journal of Nutrition. 2014;112:S31-S43. DOI: 10.1017/S0007114514002293. [DOI:10.1017/S0007114514002293] [PMID]
58. Li X, Zhou L, Yu Y, Zhang J, Wang J, Sun B. The Potential Functions and Mechanisms of Oat on Cancer Prevention: A Review. Journal of agricultural and food chemistry. 2022. DOI: 10.1021/acs.jafc.2c06518. [DOI:10.1021/acs.jafc.2c06518] [PMID]
59. Yu Y, Zhou L, Li X, Liu J, Li H, Gong L. The Progress of Nomenclature, Structure, Metabolism, and Bioactivities of Oat Novel Phytochemical: Avenanthramides. Journal of agricultural and food chemistry. 2022. DOI: 10.1021/acs.jafc.1c05704. [DOI:10.1021/acs.jafc.1c05704] [PMID]
60. Fu Rong D, Li Z, Zhang Jinqi Li N. Avenanthramide C induces cellular senescence in colorectal cancer cells via suppressing β-catenin-mediated the transcription of miR-183/96/182 cluster. Biochemical Pharmacology 2022;199:115021. [DOI:10.1016/j.bcp.2022.115021] [PMID]
61. Kordkatouli M, CHO WC, Bondarkhilli SAM, Dulskas A, Qureshi SAM.Oct-4 and Its Role in the Oncogenesis of Colorectal Cancer. Middle East Journal of Cancer. 2024;15: -. https://mejc.sums.ac.ir/article_49918_25eefc8c3eb0cd9d543213163f2a0624.pdf
62. Kordkatouli M, Mohammadi Bondarkhilli SA, Sateei A, Mahmood Janlou MA. Roles of miR-21 in the Onset and Advancement of Colorectal Cancer (CRC). Multidisciplinary Cancer Investigation. 2024;8 0-0. doi: 10.61186/mci.8.1.3. http://mcijournal.com/article-1-394-en.html [DOI:10.61186/mci.8.1.3]
63. Sadeghi Z, Maleki P, Mohammadi Bondarkhilli SA, Mohammadi M, Raheb J. Dataset on cytotoxicity effect of polyethylenimine-functionalized graphene oxide nanoparticles on the human embryonic carcinoma stem cell, NTERA2 cell line. Data in brief. 2019;26:104487. DOI: 10.1016/j.dib.2019.104487 [DOI:10.1016/j.dib.2019.104487] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb