Volume 0 - Multidisciplinary Cancer Investigation                   Multidiscip Cancer Investig 2025, 0 - Multidisciplinary Cancer Investigation: 1-19 | Back to browse issues page

Ethics code: Genetics


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kordkatouli M, Heidari M, Azami N, Poursamimi J. Colorectal Cancer Pathogenesis and Treatment Strategies: Insights into the Role of p53. Multidiscip Cancer Investig 2025; https://doi.org/10.61882/mci.8.2.1
URL: http://mcijournal.com/article-1-404-en.html
1- Department of Cell and Molecular Biology , GO.C, Islamic Azad University, Gorgan, Iran
2- Department of Biology, GO.C, Islamic Azad University, Gorgan, IranMedicinal plants research center, GO.C, Islamic Azad University, Gorgan, Iran , Mahmoud.heidari@iau.ac.ir
3- Department of Biology, Faculty of Science, GO.C, Islamic Azad University, Gorgan, IranMedicinal Plants Research Center, GO.C, Islamic Azad University, Gorgan, Iran
4- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
Abstract:   (806 Views)
Colorectal cancer (CRC) is a major cause of cancer-related morbidity and mortality worldwide. Its development results from cumulative somatic and genetic alterations that disrupt normal cell division and promote uncontrolled proliferation. Genetic and epigenetic modifications, particularly mutations in tumor suppressor genes such as TP53, are key drivers of CRC. Most CRCs are adenocarcinomas, and the CMS4 molecular subtype is characterized by enhanced stromal invasion and epithelial-mesenchymal transition (EMT), mainly regulated through the TGF-β signaling pathway.
This narrative review aims to highlight the molecular mechanisms underlying CRC pathogenesis, with a specific focus on the Role of p53, and to explore emerging gene therapy strategies targeting these pathways.
This study is a narrative review based on a comprehensive search of articles published from 2000 to 2024 in PubMed, Scopus, and Web of Science. Keywords included "colorectal cancer," "p53," "gene therapy," "CMS4," "WNT/β-catenin," and "angiogenesis." Selected articles were reviewed for relevance to the pathogenesis and targeted treatment approaches in CRC.
Alterations in WNT/β-catenin signaling, cell cycle regulators, and apoptotic pathways are commonly observed in CRC. p53 mutations significantly affect tumor progression and response to therapy. Gene therapy approaches using adeno-associated virus (AAV) vectors to deliver anti-angiogenic genes such as angiostatin and endostatin offer novel therapeutic potential, with reduced side effects and improved targeting of tumor pathways.
Targeting molecular abnormalities, especially those involving p53, may enhance CRC treatment efficacy. Gene-based strategies represent a promising direction in personalized CRC therapy.
Full-Text [PDF 573 kb]   (898 Downloads)    
Select article type: Review Article | Subject: Molecular Mechanisms
Received: 2024/09/4 | Accepted: 2024/12/13 | ePublished: 2025/10/8

References
1. Hasbullah HH, Musa M. Gene therapy targeting p53 and KRAS for colorectal cancer treatment: a myth or the way forward? Int J Mol Sci. 2021 Nov 3;22(21):11941. doi: 10.3390/ijms222111941 [DOI:10.3390/ijms222111941] [PMID] []
2. Brown KGM, Solomon MJ, Mahon K, O'Shannassy S. Management of colorectal cancer. BMJ. 2019;366:l4561. doi: 10.1136/bmj.l4561 [DOI:10.1136/bmj.l4561] [PMID]
3. Andrew AS, Parker S, Anderson JC, Rees JR, Robinson C, Riddle B, et al. Risk factors for diagnosis of colorectal cancer at a late stage: a population-based study. J Gen Intern Med. 2018;33(12):2100-5. doi: 10.1007/s11606-018-4630-0 [DOI:10.1007/s11606-018-4648-7] [PMID] []
4. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713-32. doi: 10.1038/s41575-019-0189-8 [DOI:10.1038/s41575-019-0189-8] [PMID]
5. Xiao Y, Hassani M, Moghaddam MB, Fazilat A, Ojarudi M, Valilo M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med Oncol. 2025 Mar 14;42(4):108. doi: 10.1007/s12032-025-02454-3 [DOI:10.1007/s12032-025-02675-8] [PMID]
6. Li Q, Geng S, Luo H, Yu P, Lan T, Lu H, et al. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther. 2024;9:266. doi: 10.1038/s41392-024-01909-w [DOI:10.1038/s41392-024-01953-7] [PMID] []
7. Pearce A, Haas M, Viney R, Pearson SA, Haywood P, Brown C, et al. Incidence and severity of self-reported chemotherapy side effects in routine care: a prospective cohort study. PLoS ONE. 2017;12(10):e0184360. doi: 10.1371/journal.pone.0184360 [DOI:10.1371/journal.pone.0184360] [PMID] []
8. Mahmood Janlou MA, Kordkatouli M, Bondarkhilli SAM, Maroufi M. Investigating the role of E-cigarettes in epigenetic changes and cancer risk. Tob Health. 2024;3(2):73-82. doi: 10.1186/s44294-024-00039-2 [DOI:10.34172/thj.1253]
9. Cui H, Shen X, Chen D. Combined chemotherapy and gene therapy of esophageal cancer with human adenoviral p53 administered by endoscopic injection combined with chemotherapy. J Clin Oncol. 2015;33(15 Suppl):e15097. doi: 10.1200/jco.2015.33.15_suppl.e15097 [DOI:10.1200/jco.2015.33.15_suppl.e15097]
10. Mohammadi Bondarkhilli SA, Kordkatouli M, Maroufi M, Dulskas A. Oncogenic and anti-cancer roles of miRNAs in colorectal cancer: a review. Micro Nano Bio Aspects. 2024;3:14-22. doi: 10.1186/s44294-024-00028-5.
11. Kordkatouli M, Sateei A, Mahmood Janlou MA. Roles of miR-21 in the onset and advancement of colorectal cancer (CRC). Multidiscip Cancer Investig. 2024;8(1):0-0. doi: 10.22034/mci.2024.411083.1175 [DOI:10.61186/mci.8.1.3]
12. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449-60. doi: 10.1056/NEJMra0804588 [DOI:10.1056/NEJMra0804588] [PMID] []
13. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479-507. doi: 10.1146/annurev-pathol-011110-130235 [DOI:10.1146/annurev-pathol-011110-130235] [PMID]
14. uinney J, Dienstmann R, Wang X, De Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350-6. doi: 10.1038/nm.3967 [DOI:10.1038/nm.3967] [PMID] []
15. Brown AL, Li M, Goncearenco A, Panchenko AR. Finding driver mutations in cancer: elucidating the role of background mutational processes. PLoS Comput Biol. 2019;15(4):e1006981. doi: 10.1371/journal.pcbi.1006981 [DOI:10.1371/journal.pcbi.1006981] [PMID] []
16. Wodarz D, Newell AC, Komarova NL. Passenger mutations can accelerate tumour suppressor gene inactivation in cancer evolution. J R Soc Interface. 2018;15(138):20170967. doi: 10.1098/rsif.2017.0967 [DOI:10.1098/rsif.2017.0967] [PMID] []
17. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138(6):2044-58. doi: 10.1053/j.gastro.2010.01.054 [DOI:10.1053/j.gastro.2010.01.054] [PMID] []
18. Milanese JS, Wang E. Germline mutations and their clinical applications in cancer. Breast Cancer Manag. 2019;8:BMT23. doi: 10.2217/bmt-2018-0016 [DOI:10.2217/bmt-2018-0016]
19. Goel A, Boland CR. Epigenetics of colorectal cancer. Gastroenterology. 2012;143(6):1442-60.e1. doi: 10.1053/j.gastro.2012.09.032 [DOI:10.1053/j.gastro.2012.09.032] [PMID] []
20. Hong SN. Genetic and epigenetic alterations of colorectal cancer. Intest Res. 2018;16(3):327-37. doi: 10.5217/ir.2018.16.3.327 [DOI:10.5217/ir.2018.16.3.327] [PMID] []
21. Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H, et al. Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 2018;37(1):173-87. doi: 10.1007/s10555-017-9726-5 [DOI:10.1007/s10555-017-9726-5] [PMID]
22. Wickham R, Lassere Y. The ABCs of colorectal cancer. Semin Oncol Nurs. 2007;23(1):1-8. doi: 10.1016/j.soncn.2006.11.002 [DOI:10.1016/j.soncn.2006.11.002] [PMID]
23. Leiphrakpam PD, Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int J Mol Sci. 2024 Mar 9;25(6):3178. doi: 10.3390/ijms25063178 [DOI:10.3390/ijms25063178] [PMID] []
24. Grazioso TP, Brandt M, Djouder N. Diet, microbiota, and colorectal cancer. iScience. 2019;21:168-87. doi: 10.1016/j.isci.2019.10.031 [DOI:10.1016/j.isci.2019.10.031] [PMID] []
25. Hardiman K. Update on sporadic colorectal cancer genetics. Clin Colon Rectal Surg. 2018;31(3):147-52. doi: 10.1055/s-0037-1609024 [DOI:10.1055/s-0037-1609024] [PMID] []
26. Clevers H. The intestinal crypt, a prototype stem cell compartment. Cell. 2013;154(2):274-84. doi: 10.1016/j.cell.2013.07.004 [DOI:10.1016/j.cell.2013.07.004] [PMID]
27. Perochon J, Carroll LR, Cordero JB. Wnt signalling in intestinal stem cells: lessons from mice and flies. Genes (Basel). 2018;9(3):138. doi: 10.3390/genes9030138 [DOI:10.3390/genes9030138] [PMID] []
28. Peddareddigari VG, Wang D, DuBois RN. The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron. 2010;3(1):149-66. doi: 10.1007/s12307-010-0043-3 [DOI:10.1007/s12307-010-0038-3] [PMID] []
29. Seton-Rogers S. Driving immune evasion. Nat Rev Cancer. 2018;18(2):67. doi: 10.1038/nrc.2018.3 [DOI:10.1038/nrc.2018.3] [PMID]
30. Mascaux C, Angelova M, Vasaturo A, Beane J, Hijazi K, Anthoine G, et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature. 2019;571(7766):570-5. doi: 10.1038/s41586-019-1330-0 [DOI:10.1038/s41586-019-1330-0] [PMID]
31. Herrera M, Berral-González A, López-Cade I, Galindo-Pumariño C, Bueno-Fortes S, Martín-Merino M, et al. Cancer-associated fibroblast-derived gene signatures determine prognosis in colon cancer patients. Mol Cancer. 2021;20(1):6. doi: 10.1186/s12943-020-01291-9 [DOI:10.1186/s12943-021-01367-x] [PMID] []
32. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174-86. doi: 10.1038/s41568-019-0238-1 [DOI:10.1038/s41568-019-0238-1] [PMID] []
33. Jackson M, Marks L, May GHW, Wilson JB. The genetic basis of disease. Essays Biochem. 2018;62(5):643-723. doi: 10.1042/EBC20170053 [DOI:10.1042/EBC20170053] [PMID] []
34. Hasbullah HH, Musa M. Gene therapy targeting p53 and KRAS for colorectal cancer treatment: a myth or the way forward? Int J Mol Sci. 2021;22(21):11941. doi: 10.3390/ijms222111941 [DOI:10.3390/ijms222111941] [PMID] []
35. Michel M, Kaps L, Maderer A, Galle PR, Moehler M. The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers (Basel). 2021;13(10):2296. doi: 10.3390/cancers13102296 [DOI:10.3390/cancers13102296] [PMID] []
36. Ramos H, Soares MI, Silva J, Raimundo L, Calheiros J, Gomes C, et al. A selective p53 activator and anti-cancer agent to improve colorectal cancer therapy. Cell Rep. 2021;35(2):109026. doi: 10.1016/j.celrep.2021.109026 [DOI:10.1016/j.celrep.2021.109026] [PMID]
37. Hassin O, Oren M. Drugging p53 in cancer: one protein, many targets. Nat Rev Drug Discov. 2023;22(2):127-44. doi: 10.1038/s41573-022-00535-1 [DOI:10.1038/s41573-022-00571-8] [PMID] []
38. Chee CW, Hashim NM, Rashid NN. Morindone as a potential therapeutic compound targeting TP53 and KRAS mutations in colorectal cancer cells. Chem Biol Interact. 2024;392:110928. doi: 10.1016/j.cbi.2023.110928 [DOI:10.1016/j.cbi.2024.110928] [PMID]
39. Carotenuto P, Pecoraro A, Brignola C, Barbato A, Franco B, Longobardi G, et al. Combining β-Carotene with 5-FU via polymeric nanoparticles as a novel therapeutic strategy to overcome uL3-mediated chemoresistance in p53-deleted colorectal cancer cells. Mol Pharm. 2023;20(5):2326-40. doi: 10.1021/acs.molpharmaceut.2c01098 [DOI:10.1021/acs.molpharmaceut.2c01098] [PMID]
40. Qi L, Li G, Li P, Wang H, Fang X, He T, et al. Twenty years of Gendicine® rAd-p53 cancer gene therapy: the first-in-class human cancer gene therapy in the era of personalized oncology. Genes Dis. 2024;11(3):101155. doi: 10.1016/j.gendis.2023.09.013 [DOI:10.1016/j.gendis.2023.101155] [PMID] []
41. Khanifar MM, Zafari Z, Sheykhhasan M. Crosstalk between long non-coding RNAs and p53 signaling pathway in colorectal cancer: a review study. Pathol Res Pract. 2023;249:154756. doi: 10.1016/j.prp.2023.154756. [DOI:10.1016/j.prp.2023.154756] [PMID]
42. Alruwaili MM, Zonneville J, Naranjo MN, Serio H, Melendy T, Straubinger RM, et al. A synergistic two-drug therapy specifically targets a DNA repair dysregulation that occurs in p53-deficient colorectal and pancreatic cancers. Cell Rep Med. 2024;5(3):101457. doi: 10.1016/j.xcrm.2024.101457 [DOI:10.1016/j.xcrm.2024.101434] [PMID] []
43. Di Y, Jing X, Hu K, Wen X, Ye L, Zhang X, et al. The c-MYC-WDR43 signalling axis promotes chemoresistance and tumour growth in colorectal cancer by inhibiting p53 activity. Drug Resist Updat. 2023;66:100909. doi: 10.1016/j.drup.2023.100909 [DOI:10.1016/j.drup.2022.100909] [PMID]
44. Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer. 2024;24(3):192-215. doi: 10.1038/s41568-023-00623-8 [DOI:10.1038/s41568-023-00658-3] [PMID]
45. Zhang H, Zheng T, Qin C, Zhang X, Lin H, Huang X, et al. CCT6A promotes cell proliferation in colon cancer by targeting BIRC5 associated with p53 status. Cancer Gene Ther. 2024;31(8):1151-63. doi: 10.1038/s41417-023-00656-5. [DOI:10.1038/s41417-023-00656-5] [PMID]
46. Xiao Y, Hassani M, Moghaddam MB, Fazilat A, Ojarudi M, Valilo M. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Med Oncol. 2025;42(4):108. doi: 10.1007/s12032-025-02454-3 [DOI:10.1007/s12032-025-02675-8] [PMID]
47. Tang YL, Li DD, Duan JY, Sheng LM, Wang X. Resistance to targeted therapy in metastatic colorectal cancer: current status and new developments. World J Gastroenterol. 2023;29(6):926-40. doi: 10.3748/wjg.v29.i6.926 [DOI:10.3748/wjg.v29.i6.926] [PMID] []
48. Domingo E, Camps C, Kaisaki PJ, Parsons MJ, Mouradov D, Pentony MM, et al. Mutation burden and other molecular markers of prognosis in colorectal cancer treated with curative intent: results from the QUASAR 2 clinical trial and an Australian community-based series. Lancet Gastroenterol Hepatol. 2018;3(9):635-43. doi: 10.1016/S2468-1253(18)30117-1 [DOI:10.1016/S2468-1253(18)30117-1] [PMID]
49. Domingo E, Camps C, Kaisaki PJ, Parsons MJ, Mouradov D, Pentony MM, et al. Mutation burden and other molecular markers of prognosis in colorectal cancer treated with curative intent: results from the QUASAR 2 clinical trial and an Australian community-based series. Lancet Gastroenterol Hepatol. 2018;3(9):635-43. doi: 10.1016/S2468-1253(18)30117-1 [DOI:10.1016/S2468-1253(18)30117-1] [PMID]
50. Liebl MC, Hofmann TG. The role of p53 signaling in colorectal cancer. Cancers (Basel). 2021 Apr 28;13(9):2125. doi: 10.3390/cancers13092125 [DOI:10.3390/cancers13092125] [PMID] []
51. Xia Y, Li X, Sun W. Applications of recombinant adenovirus-p53 gene therapy for cancers in the clinic in China. Curr Gene Ther. 2020;20(2):127-41. doi: 10.2174/1566523220666200127110450. [DOI:10.2174/1566523220999200731003206] [PMID]
52. Yan S, Zhan F, He Y, Wang J, Li W, Lin J, et al. p53 in colorectal cancer: from a master player to a privileged therapy target. J Transl Med. 2025;23:684. doi: 10.1186/s12967-025-05619-1 [DOI:10.1186/s12967-025-06566-4] [PMID] []
53. Gordon EM, Hall FL. Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther. 2010;10(5):819-32. doi: 10.1517/14712591003769892 [DOI:10.1517/14712598.2010.481666] [PMID]
54. Xia Y, Li X, Sun W. Applications of recombinant adenovirus-p53 gene therapy for cancers in the clinic in China. Curr Gene Ther. 2020;20(2):127-41. doi: 10.2174/1566523220666200127110450 [DOI:10.2174/1566523220999200731003206] [PMID]
55. Greenberger S, Shaish A, Varda-Bloom N, Levanon K, Breitbart E, Goldberg I, et al. Transcription-controlled gene therapy against tumor angiogenesis. J Clin Invest. 2004;113(7):1017-24. doi: 10.1172/JCI20438. [DOI:10.1172/JCI200420007] [PMID] []
56. renner AJ, Peters KB, Vredenburgh J, Bokstein F, Blumenthal DT, Yust-Katz S, et al. Safety and efficacy of VB-111, an anti-cancer gene therapy, in patients with recurrent glioblastoma: results of a phase I/II study. Neuro Oncol. 2020;22(5):694-704. doi: 10.1093/neuonc/noz231 [DOI:10.1093/neuonc/noz231] [PMID] []
57. Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón Hernández E, Ibáñez-Hernández M. Strategies for targeting gene therapy in cancer cells with tumor-specific promoters. Front Oncol. 2020;10:605380. doi: 10.3389/fonc.2020.605380 [DOI:10.3389/fonc.2020.605380] [PMID] []
58. Yue J, Luo S, Lu M, Shao D, Wang Z, Dong W. A comparison of mesoporous silica nanoparticles and mesoporous organosilica nanoparticles as drug vehicles for cancer therapy. Chem Biol Drug Des. 2018;92(4):1435-44. doi: 10.1111/cbdd.13275 [DOI:10.1111/cbdd.13309] [PMID]
59. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207-18. doi: 10.1056/NEJMoa2017699 [DOI:10.1056/NEJMoa2017699] [PMID]
60. Yan LJ, Guo XH, Wang WP, Hu YR, Duan SF, Liu Y, et al. Gene therapy and photothermal therapy of layer-by-layer assembled AuNCs/PEI/miRNA/HA nanocomplexes. Curr Cancer Drug Targets. 2019;19(4):330-7. doi: 10.2174/1568009619666181022162350 [DOI:10.2174/1568009618666181016144855] [PMID]
61. ….
62. Lisiansky V, Naumov I, Shapira S, Kazanov D, Starr A, Arber N, et al. Gene therapy of pancreatic cancer targeting the K-Ras oncogene. Cancer Gene Ther. 2012;19(12):862-9. doi: 10.1038/cgt.2012.64 [DOI:10.1038/cgt.2012.64] [PMID]
63. Liu Y, Wang L, Lu X. A new way to target p53-defective colorectal cancer. Future Oncol. 2015;11(21):3101-4. doi: 10.2217/fon.15.278 [DOI:10.2217/fon.15.278] [PMID]
64. Puca R, Nardinocchi L, Porru M, Simon AJ, Rechavi G, Leonetti C, et al. Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anti-cancer drugs. Cell Cycle. 2011;10(10):1679-89. doi: 10.4161/cc.10.10.15642 [DOI:10.4161/cc.10.10.15642] [PMID]
65. Kordkatouli M, Mahmood Janlou MA, Sateei A, Mousavi MMH, Dulskas A. Recent progress in nanoparticle-driven drug delivery strategies for cancer therapy: focus on colorectal cancer. Zahedan J Res Med Sci. 2025;27(1):e158109. doi: 10.5812/zjrms-158109 [DOI:10.5812/zjrms-158109]
66. Satapathy SR, Mohapatra P, Preet R, Das D, Sarkar B, Choudhuri T, et al. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine (Lond). 2013;8(8):1307-22. doi: 10.2217/nnm.12.179 [DOI:10.2217/nnm.12.179] [PMID]
67. Lauby-Secretan B, Vilahur N, Bianchini F, Guha N, Straif K. The IARC perspective on colorectal cancer screening. N Engl J Med. 2018;378(18):1734-40. doi: 10.1056/NEJMsr1714643 [DOI:10.1056/NEJMsr1714643] [PMID] []
68. Unim B, Pitini E, De Vito C, D'Andrea E, Marzuillo C, Villari P. Cost-effectiveness of RAS genetic testing strategies in patients with metastatic colorectal cancer: a systematic review. Value Health. 2020;23(1):114-26. doi: 10.1016/j.jval.2019.07.011 [DOI:10.1016/j.jval.2019.07.011] [PMID]
69. Foulkes WD. p53-master and commander. N Engl J Med. 2007;357(25):2539-41. doi: 10.1056/NEJMe078216 [DOI:10.1056/NEJMp0707422] [PMID]
70. Fazilat A, Mamalo AS, Roshani S, Razmi S, Valilo M. The interaction between miRNAs and 14-3-3ζ protein in different diseases. Protein Pept Lett. 2025 Jul 2. [Epub ahead of print]. doi: 10.2174/0929866532666250702102847 [DOI:10.2174/0109298665377739250618153852] [PMID]
71. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20(5):e3015. doi: 10.1002/jgm.3015 [DOI:10.1002/jgm.3015] [PMID]
72. de Wert G, Pennings G, Clarke A, Eichenlaub-Ritter U, van El CG, Forzano F, et al. Human germline gene editing. Recommendations of ESHG and ESHRE. Eur J Hum Genet. 2018;26(4):445-9. doi: 10.1038/s41431-017-0024-2 [DOI:10.1038/s41431-017-0076-0] [PMID] []
73. Riva L, Petrini C. A few ethical issues in translational research for gene and cell therapy. J Transl Med. 2019;17:395. doi: 10.1186/s12967-019-02133-3. [DOI:10.1186/s12967-019-02154-5] [PMID] []

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Multidisciplinary Cancer Investigation

Designed & Developed by : Yektaweb