1. Bengio Y. Deep learning of representations for unsupervised and transfer learning. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning. 2012;27:17-36. [Available from: https://proceedings.mlr.press/v27/bengio12a.html]
2. Naveed H, Khan AU, Qiu S, Saqib M, Anwar S, Usman M, Akhtar N, Barnes N, Mian A. A comprehensive overview of large language models. ACM Trans Intell Syst Technol. 2025;16(5):1-72. doi:10.1145/3652427 [
DOI:10.1145/3744746]
3. Howard J, Ruder S. Universal Language Model Fine-Tuning for Text Classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics; 2018. p. 328-339. doi:10.18653/v1/P18-1031 [
DOI:10.18653/v1/P18-1031] [
PMID]
4. Goldberg Y, Levy O. Word2vec explained: deriving Mikolov et al.'s negative-sampling word-embedding method. arXiv preprint. 2014;arXiv:1402.3722. Available from: https://arxiv.org/abs/1402.3722
5. Janin J, Miller S, Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol. 1988;204(1):155-164. doi:10.1016/0022-2836(88)90606-3 [
DOI:10.1016/0022-2836(88)90606-7] [
PMID]
6. Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-inspired artificial intelligence. Neuron. 2017;95(2):245-258. doi:10.1016/j.neuron.2017.06.011 [
DOI:10.1016/j.neuron.2017.06.011] [
PMID]
7. Vihinen M, Torkkila E, Riikonen P. Accuracy of protein flexibility predictions. Proteins. 1994;19(2):141-149. doi:10.1002/prot.340190207 [
DOI:10.1002/prot.340190207] [
PMID]
8. Ahmadi S, Knerr JM, Argemí L, Bordon KCF, Pucca M, Cerni F, et al. Scorpion venom: Detriments and benefits. Biomedicines. 2020;8(5):118. doi:10.3390/biomedicines8050118 [
DOI:10.3390/biomedicines8050118] [
PMID] [
]
9. Jenner RA, von Reumont BM, Campbell LI, Undheim EAB. Parallel evolution of complex centipede venoms revealed by comparative proteotranscriptomic analyses. Mol Biol Evol. 2019;36(12):2748-2763. doi:10.1093/molbev/msz176 [
DOI:10.1093/molbev/msz176] [
PMID] [
]
10. Maaten Lvd, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-2605. Available from: https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
11. Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2(10):790-802. doi:10.1038/nrd1197 [
DOI:10.1038/nrd1197] [
PMID]
12. Gallese V. Embodied simulation: From neurons to phenomenal experience. Phenom Cogn Sci. 2005;4(1):23-48. doi:10.1007/s11097-005-4737-z [
DOI:10.1007/s11097-005-4737-z]
13. Wong ES, Hardy MC, Wood D, Bailey T, King GF. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. PLoS One. 2013;8(7):e66279. doi:10.1371/journal.pone.0066279 [
DOI:10.1371/journal.pone.0066279] [
PMID] [
]
14. Chauhan M, Gupta A, Tomer R, Raghava GP. CancerPPD2: an updated repository of anticancer peptides and proteins. Database (Oxford). 2025;2025:baaf030. doi:10.1093/database/baaf030 [
DOI:10.1093/database/baaf030] [
PMID] [
]
15. Chen JY, Wang JF, Hu Y, Li XH, Qian YR, Song CL. Evaluating the advancements in protein language models for encoding strategies in protein function prediction: a comprehensive review. Front Bioeng Biotechnol. 2025;13:1506508. doi:10.3389/fbioe.2025.1506508 [
DOI:10.3389/fbioe.2025.1506508] [
PMID] [
]
16. Pan X, Zuallaert J, Wang X, Shen HB, Campos EP, Marushchak DO, et al. ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics. 2020;36(13):4222-4231. doi:10.1093/bioinformatics/btaa518 [
DOI:10.1093/bioinformatics/btaa518] [
PMID] [
]
17. Cho K, van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics; 2014. p. 1724-1734. doi:10.3115/v1/D14-1179 [
DOI:10.3115/v1/D14-1179]
18. Xiao Y, Zhao W, Zhang J, Jin Y, Zhang H, Ren Z, et al. Protein large language models: A comprehensive survey. arXiv preprint. 2025;arXiv:2502.17504. Available from: https://arxiv.org/abs/2502.17504
19. Naamati G, Askenazi M, Linial M. ClanTox: a classifier of short animal toxins. Nucleic Acids Res. 2009;37(suppl_2):W363-W368. doi:10.1093/nar/gkp240 [
DOI:10.1093/nar/gkp240] [
PMID] [
]
20. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219-229. doi:10.1016/j.tree.2012.10.020 [
DOI:10.1016/j.tree.2012.10.020] [
PMID]
21. Wan F, Zeng JM. Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv. 2016;086033. doi:10.1101/086033 [
DOI:10.1101/086033]
22. Linial M, Rappoport N, Ofer D. Overlooked short toxin-like proteins: a shortcut to drug design. Toxins (Basel). 2017;9(11):350. doi:10.3390/toxins9110350 [
DOI:10.3390/toxins9110350] [
PMID] [
]
23. Starcevic A, Moura-da Silva AM, Cullum J, Hranueli D, Long PF. Combinations of long peptide sequence blocks can be used to describe toxin diversification in venomous animals. Toxicon. 2015;95:84-92. doi:10.1016/j.toxicon.2014.12.005 [
DOI:10.1016/j.toxicon.2014.12.005] [
PMID]
24. Asgari E, McHardy AC, Mofrad MR. Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (dimotif) and sequence embedding (protvecx). Sci Rep. 2019;9(1):3577. doi:10.1038/s41598-019-39813-0 [
DOI:10.1038/s41598-019-38746-w] [
PMID] [
]
25. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. HuggingFace's Transformers: State-of-the-art natural language processing. arXiv preprint. 2019;arXiv:1910.03771. Available from: https://arxiv.org/abs/1910.03771
26. Butlin P, Long R, Elmoznino E, Bengio Y, Birch J, Constant A, et al. Consciousness in artificial intelligence: insights from the science of consciousness. arXiv preprint. 2023;arXiv:2308.08708. [Available from: https://arxiv.org/abs/2308.08708]
27. Prashanth JR, Hasaballah N, Vetter I. Pharmacological screening technologies for venom peptide discovery. Neuropharmacology. 2017;127:4-19. doi:10.1016/j.neuropharm.2017.03.008 [
DOI:10.1016/j.neuropharm.2017.03.008] [
PMID]
28. Asgari E, Mofrad MR. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One. 2015;10(11):e0141287. doi:10.1371/journal.pone.0141287 [
DOI:10.1371/journal.pone.0141287] [
PMID] [
]
29. Chang Y, Wang X, Wang J, Wu Y, Yang L, Zhu K, et al. A survey on the evaluation of large language models. ACM Trans Intell Syst Technol. 2024;15(3):1-45. doi:10.1145/3639376 [
DOI:10.1145/3641289]
30. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information. Trans Assoc Comput Linguist. 2017;5:135-146. doi:10.1162/tacl_a_00051 [
DOI:10.1162/tacl_a_00051]
31. Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational studies of snake venom toxins. Toxins (Basel). 2018;10(1):8. doi:10.3390/toxins10010008 [
DOI:10.3390/toxins10010008] [
PMID] [
]
32. Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol. 2014;6(8):2088-2095. doi:10.1093/gbe/evu166 [
DOI:10.1093/gbe/evu166] [
PMID] [
]
33. Clark A. Supersizing the Mind: Embodiment, Action, and Cognitive Extension. Oxford: Oxford University Press; 2010. doi:10.1093/acprof:oso/9780195333213.001.0001 [
DOI:10.1093/acprof:oso/9780195333213.001.0001]
34. Johnson M. Philosophy in the Flesh: The Embodied Mind and Its Challenge to Western Thought. New York: Basic Books; 1999.
35. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep transfer learning. In: International Conference on Artificial Neural Networks. Cham: Springer; 2018. p. 270-279. doi:10.1007/978-3-030-01424-7_27 [
DOI:10.1007/978-3-030-01424-7_27]
36. Cole TJ, Brewer MS. Toxify: a deep learning approach to classify animal venom proteins. PeerJ. 2019;7:e7200. doi:10.7717/peerj.7200 [
DOI:10.7717/peerj.7200] [
PMID] [
]
37. Dao FY, Yang H, Su ZD, Yang W, Wu Y, Hui D, et al. Recent advances in conotoxin classification by using machine learning methods. Molecules. 2017;22(7):1057. doi:10.3390/molecules22071057 [
DOI:10.3390/molecules22071057] [
PMID] [
]
38. Atchley WR, Zhao J, Fernandes AD, Drüke T. Solving the protein sequence metric problem. Proc Natl Acad Sci U S A. 2005;102(18):6395-6400. doi:10.1073/pnas.0408677102 [
DOI:10.1073/pnas.0408677102] [
PMID] [
]
39. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (NIPS). 2013;26:3111-3119.
40. Gacesa R, Barlow DJ, Long PF. Machine learning can differentiate venom toxins from other proteins having non-toxic physiological functions. PeerJ Comput Sci. 2016;2:e90. doi:10.7717/peerj-cs.90 [
DOI:10.7717/peerj-cs.90]
41. Jungo F, Bougueleret L, Xenarios I, Poux S. The UniProtKB/Swiss-Prot Tox-Prot program: a central hub of integrated venom protein data. Toxicon. 2012;60(4):551-557. doi:10.1016/j.toxicon.2012.03.010 [
DOI:10.1016/j.toxicon.2012.03.010] [
PMID] [
]
42. Rao R, Bhattacharya N, Thomas N, Duan Y, Chen P, Canny J, et al. Evaluating protein transfer learning with TAPE. In: Advances in Neural Information Processing Systems (NeurIPS). 2019;32:9689-9701. [
DOI:10.1101/676825]
43. Nawarak J, Sinchaikul S, Wu CY, Liau MY, Phutrakul S, Chen ST. Proteomics of snake venoms from elapidae and viperidae families by multidimensional chromatographic methods. Electrophoresis. 2003;24(16):2838-2854. doi:10.1002/elps.200305517 [
DOI:10.1002/elps.200305517] [
PMID]
44. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105-132. doi:10.1016/0022-2836(82)90515-0 [
DOI:10.1016/0022-2836(82)90515-0] [
PMID]
45. Emini EA, Hughes JV, Perlow D, Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985;55(3):836-839. doi:10.1128/jvi.55.3.836-839.1985 [
DOI:10.1128/jvi.55.3.836-839.1985] [
PMID] [
]
46. Ma R, Mahadevappa R, Kwok H. Venom-based peptide therapy: insights into anticancer mechanism. Oncotarget. 2017;8:100908-100930. doi:10.18632/oncotarget.21757 [
DOI:10.18632/oncotarget.21757] [
PMID] [
]